scholarly journals Plasmodium yoelii Erythrocyte-Binding-like Protein Modulates Host Cell Membrane Structure, Immunity, and Disease Severity

mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu-chih Peng ◽  
Yanwei Qi ◽  
Cui Zhang ◽  
Xiangyu Yao ◽  
Jian Wu ◽  
...  

ABSTRACT Erythrocyte-binding-like (EBL) proteins are known to play an important role in malaria parasite invasion of red blood cells (RBCs); however, any roles of EBL proteins in regulating host immune responses remain unknown. Here, we show that Plasmodium yoelii EBL (PyEBL) can shape disease severity by modulating the surface structure of infected RBCs (iRBCs) and host immune responses. We identified an amino acid substitution (a change of C to Y at position 741 [C741Y]) in the protein trafficking domain of PyEBL between isogenic P. yoellii nigeriensis strain N67 and N67C parasites that produce different disease phenotypes in C57BL/6 mice. Exchanges of the C741Y alleles altered parasite growth and host survival accordingly. The C741Y substitution also changed protein processing and trafficking in merozoites and in the cytoplasm of iRBCs, reduced PyEBL binding to band 3, increased phosphatidylserine (PS) surface exposure, and elevated the osmotic fragility of iRBCs, but it did not affect invasion of RBCs in vitro. The modified iRBC surface triggered PS-CD36-mediated phagocytosis of iRBCs, host type I interferon (IFN-I) signaling, and T cell differentiation, leading to improved host survival. This study reveals a previously unknown role of PyEBL in regulating host-pathogen interaction and innate immune responses, which may be explored for developing disease control strategies. IMPORTANCE Malaria is a deadly parasitic disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild symptoms, or fatal, depending on a delicate balance of host immune responses. Malaria parasites enter host red blood cells (RBCs) through interactions between parasite ligands and host receptors, such as erythrocyte-binding-like (EBL) proteins and host Duffy antigen receptor for chemokines (DARC). Plasmodium yoelii EBL (PyEBL) is known to play a role in parasite invasion of RBCs. Here, we show that PyEBL also affects disease severity through modulation of host immune responses, particularly type I interferon (IFN-I) signaling. This discovery assigns a new function to PyEBL and provides a mechanism for developing disease control strategies.

2012 ◽  
Vol 80 (4) ◽  
pp. 1399-1407 ◽  
Author(s):  
Jessica L. Miller ◽  
Anke Harupa ◽  
Stefan H. I. Kappe ◽  
Sebastian A. Mikolajczak

ABSTRACTMammalian macrophage migration inhibitory factor (MIF) is a multifaceted cytokine involved in both extracellular and intracellular functions. Malaria parasites express a MIF homologue that might modulate host immune responses against blood-stage parasites, but the potential importance of MIF against other life cycle stages remains unstudied. In this study, we characterized the MIF homologue ofPlasmodium yoeliithroughout the life cycle, with emphasis on preerythrocytic stages.P. yoeliiMIF (Py-MIF) was expressed in blood-stage parasites and detected at low levels in mosquito salivary gland sporozoites. MIF expression was strong throughout liver-stage development and localized to the cytoplasm of the parasite, with no evidence of release into the host hepatocyte. To examine the importance of Py-MIF for liver-stage development, we generated a Py-mifknockout parasite (P. yoeliiΔmif).P. yoeliiΔmifparasites grew normally as asexual erythrocytic-stage parasites and showed normal infection of mosquitoes. In contrast, theP. yoeliiΔmifstrain was attenuated during the liver stage. Mice infected withP. yoeliiΔmifsporozoites either did not develop blood-stage parasitemia or exhibited a delay in the onset of blood-stage patency. Furthermore,P. yoeliiΔmifparasites exhibited growth retardationin vivo. Combined, the data indicate thatPlasmodiumMIF is important for liver-stage development ofP. yoelii, during which it is likely to play an intrinsic role in parasite development rather than modulating host immune responses to infection.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Ali Hassan ◽  
Myriam F. Wlodarczyk ◽  
Mehdi Benamar ◽  
Emilie Bassot ◽  
Anna Salvioni ◽  
...  

ABSTRACT Coinfections shape immunity and influence the development of inflammatory diseases, resulting in detrimental or beneficial outcome. Coinfections with concurrent Plasmodium species can alter malaria clinical evolution, and malaria infection itself can modulate autoimmune reactions. Yet, the underlying mechanisms remain ill defined. Here, we demonstrate that the protective effects of some rodent malaria strains on T cell-mediated inflammatory pathologies are due to an RNA virus cohosted in malaria-parasitized blood. We show that live and extracts of blood parasitized by Plasmodium berghei K173 or Plasmodium yoelii 17X YM, protect against P. berghei ANKA-induced experimental cerebral malaria (ECM) and myelin oligodendrocyte glycoprotein (MOG)/complete Freund’s adjuvant (CFA)-induced experimental autoimmune encephalomyelitis (EAE), and that protection is associated with a strong type I interferon (IFN-I) signature. We detected the presence of the RNA virus lactate dehydrogenase-elevating virus (LDV) in the protective Plasmodium stabilates and we established that LDV infection alone was necessary and sufficient to recapitulate the protective effects on ECM and EAE. In ECM, protection resulted from an IFN-I-mediated reduction in the abundance of splenic conventional dendritic cell and impairment of their ability to produce interleukin (IL)-12p70, leading to a decrease in pathogenic CD4+ Th1 responses. In EAE, LDV infection induced IFN-I-mediated abrogation of IL-23, thereby preventing the differentiation of granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing encephalitogenic CD4+ T cells. Our work identifies a virus cohosted in several Plasmodium stabilates across the community and deciphers its major consequences on the host immune system. More generally, our data emphasize the importance of considering contemporaneous infections for the understanding of malaria-associated and autoimmune diseases. IMPORTANCE Any infection modifies the host immune status, potentially ameliorating or aggravating the pathophysiology of a simultaneous inflammatory condition. In the course of investigating how malaria infection modulates the severity of contemporaneous inflammatory diseases, we identified a nonpathogenic mouse virus in stabilates of two widely used rodent parasite lines: Plasmodium berghei K173 and Plasmodium yoelii 17X YM. We established that the protective effects of these Plasmodium lines on cerebral malaria and multiple sclerosis are exclusively due to this virus. The virus induces a massive type I interferon (IFN-I) response and causes quantitative and qualitative defects in the ability of dendritic cells to promote pathogenic T cell responses. Beyond revealing a possible confounding factor in rodent malaria models, our work uncovers some bases by which a seemingly innocuous viral (co)infection profoundly changes the immunopathophysiology of inflammatory diseases.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1720
Author(s):  
Kuo-Chieh Liao ◽  
Mariano A. Garcia-Blanco

The importance of transcriptional regulation of host genes in innate immunity against viral infection has been widely recognized. More recently, post-transcriptional regulatory mechanisms have gained appreciation as an additional and important layer of regulation to fine-tune host immune responses. Here, we review the functional significance of alternative splicing in innate immune responses to viral infection. We describe how several central components of the Type I and III interferon pathways encode spliced isoforms to regulate IFN activation and function. Additionally, the functional roles of splicing factors and modulators in antiviral immunity are discussed. Lastly, we discuss how cell death pathways are regulated by alternative splicing as well as the potential role of this regulation on host immunity and viral infection. Altogether, these studies highlight the importance of RNA splicing in regulating host–virus interactions and suggest a role in downregulating antiviral innate immunity; this may be critical to prevent pathological inflammation.


2021 ◽  
Vol 1 (1) ◽  
pp. 49-59
Author(s):  
Selvakumar Subbian

The Coronavirus Disease-2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has claimed 1.2 million people globally since December 2019. Although the host factors underpinning COVID-19 pathology are not fully understood, type I interferon (IFN-I) response is considered crucial for SARS-CoV-2 pathogenesis. Perturbations in IFN-I signaling and associated interferon-inducible genes (ISG) are among the primary disease severity indicators in COVID-19. Consequently, IFN-I therapy, either alone or in- combination with existing antiviral or anti-inflammatory drugs, is tested in many ongoing clinical trials to reduce COVID-19 mortality. Since signaling by the IFN-I family of molecules regulates host immune response to other infectious and non-infectious diseases, any imbalance in this family of cytokines would impact the clinical outcome of COVID-19, as well as other co-existing diseases. Therefore, it is imperative to evaluate the beneficial-versus-detrimental effects of IFN-I immunotherapy for COVID-19 patients with divergent disease severity and other co-existing conditions. This review article summarizes the role of IFN-I signaling in infectious and non-infectious diseases of humans. It highlights the precautionary measures to be considered before administering IFN-I to COVID-19 patients having other co-existing disorders. Finally, suggestions are proposed to improve IFN-I immunotherapy to COVID-19.


2013 ◽  
Vol 20 (11) ◽  
pp. 1703-1710 ◽  
Author(s):  
Luca Formichella ◽  
Laura Romberg ◽  
Christian Bolz ◽  
Michael Vieth ◽  
Michael Geppert ◽  
...  

ABSTRACTHelicobacter pyloricolonizes half of the world's population, and infection can lead to ulcers, gastric cancer, and mucosa-associated lymphoid tissue (MALT) lymphoma. Serology is the only test applicable for large-scale, population-based screening, but current tests are hampered by a lack of sensitivity and/or specificity. Also, no serologic test allows the differentiation of type I and type II strains, which is important for predicting the clinical outcome.H. pylorivirulence factors have been associated with disease, but direct assessment of virulence factors requires invasive methods to obtain gastric biopsy specimens. Our work aimed at the development of a highly sensitive and specific, noninvasive serologic test to detect immune responses to importantH. pylorivirulence factors. This line immunoassay system (recomLine) is based on recombinant proteins. For this assay, six highly immunogenic virulence factors (CagA, VacA, GroEL, gGT, HcpC, and UreA) were expressed inEscherichia coli, purified, and immobilized to nitrocellulose membranes to detect serological immune responses in patient's sera. For the validation of the line assay, a cohort of 500 patients was screened, of which 290 (58.0%) wereH. pylorinegative and 210 (42.0%) were positive by histology. The assay showed sensitivity and specificity of 97.6% and 96.2%, respectively, compared to histology. In direct comparison to lysate blotting and enzyme-linked immunosorbent assay (ELISA), therecomLine assay had increased discriminatory power. For the assessment of individual risk for gastrointestinal disease, the test must be validated in a larger and defined patient cohort. Taking the data together, therecomLine assay provides a valuable tool for the diagnosis ofH. pyloriinfection.


2014 ◽  
Vol 82 (5) ◽  
pp. 2068-2078 ◽  
Author(s):  
Christopher R. Doyle ◽  
Ji-An Pan ◽  
Patricio Mena ◽  
Wei-Xing Zong ◽  
David G. Thanassi

ABSTRACTFrancisella tularensisis a facultative intracellular, Gram-negative pathogen and the causative agent of tularemia. We previously identified TolC as a virulence factor of theF. tularensislive vaccine strain (LVS) and demonstrated that a ΔtolCmutant exhibits increased cytotoxicity toward host cells and elicits increased proinflammatory responses compared to those of the wild-type (WT) strain. TolC is the outer membrane channel component used by the type I secretion pathway to export toxins and other bacterial virulence factors. Here, we show that the LVS delays activation of the intrinsic apoptotic pathway in a TolC-dependent manner, both during infection of primary macrophages and during organ colonization in mice. The TolC-dependent delay in host cell death is required forF. tularensisto preserve its intracellular replicative niche. We demonstrate that TolC-mediated inhibition of apoptosis is an active process and not due to defects in the structural integrity of the ΔtolCmutant. These findings support a model wherein the immunomodulatory capacity ofF. tularensisrelies, at least in part, on TolC-secreted effectors. Finally, mice vaccinated with the ΔtolCLVS are protected from lethal challenge and clear challenge doses faster than WT-vaccinated mice, demonstrating that the altered host responses to primary infection with the ΔtolCmutant led to altered adaptive immune responses. Taken together, our data demonstrate that TolC is required for temporal modulation of host cell death during infection byF. tularensisand highlight how shifts in the magnitude and timing of host innate immune responses may lead to dramatic changes in the outcome of infection.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 530
Author(s):  
Rosa C. Coldbeck-Shackley ◽  
Nicholas S. Eyre ◽  
Michael R. Beard

Zika Virus (ZIKV) and Dengue Virus (DENV) are related viruses of the Flavivirus genus that cause significant disease in humans. Existing control measures have been ineffective at curbing the increasing global incidence of infection for both viruses and they are therefore prime targets for new vaccination strategies. Type-I interferon (IFN) responses are important in clearing viral infection and for generating efficient adaptive immune responses towards infection and vaccination. However, ZIKV and DENV have evolved multiple molecular mechanisms to evade type-I IFN production. This review covers the molecular interactions, from detection to evasion, of these viruses with the type-I IFN response. Additionally, we discuss how this knowledge can be exploited to improve the design of new vaccine strategies.


Author(s):  
Jian Wu ◽  
Lu Xia ◽  
Xiangyu Yao ◽  
Xiao Yu ◽  
Keyla C. Tumas ◽  
...  

Malaria infection induces complex and diverse immune responses. To elucidate the mechanisms underlying host–parasite interaction, we performed a genetic screen during early (24 h) Plasmodium yoelii infection in mice and identified a large number of interacting host and parasite genes/loci after transspecies expression quantitative trait locus (Ts-eQTL) analysis. We next investigated a host E3 ubiquitin ligase gene (March1) that was clustered with interferon (IFN)-stimulated genes (ISGs) based on the similarity of the genome-wide pattern of logarithm of the odds (LOD) scores (GPLS). March1 inhibits MAVS/STING/TRIF-induced type I IFN (IFN-I) signaling in vitro and in vivo. However, in malaria-infected hosts, deficiency of March1 reduces IFN-I production by activating inhibitors such as SOCS1, USP18, and TRIM24 and by altering immune cell populations. March1 deficiency increases CD86+DC (dendritic cell) populations and levels of IFN-γ and interleukin 10 (IL-10) at day 4 post infection, leading to improved host survival. T cell depletion reduces IFN-γ level and reverse the protective effects of March1 deficiency, which can also be achieved by antibody neutralization of IFN-γ. This study reveals functions of MARCH1 (membrane-associated ring-CH–type finger 1) in innate immune responses and provides potential avenues for activating antimalaria immunity and enhancing vaccine efficacy.


2014 ◽  
Vol 82 (11) ◽  
pp. 4643-4653 ◽  
Author(s):  
Anke Harupa ◽  
Brandon K. Sack ◽  
Viswanathan Lakshmanan ◽  
Nadia Arang ◽  
Alyse N. Douglass ◽  
...  

ABSTRACTPlasmodiumsporozoites develop within oocysts in the mosquito midgut wall and then migrate to the salivary glands. After transmission, they embark on a complex journey to the mammalian liver, where they infect hepatocytes. Proteins on the sporozoite surface likely mediate multiple steps of this journey, yet only a few sporozoite surface proteins have been described. Here, we characterize a novel, conserved sporozoite surface protein (SSP3) in the rodent malaria parasitePlasmodium yoelii. SSP3 is a putative type I transmembrane protein unique toPlasmodium. By using epitope tagging and SSP3-specific antibodies in conjunction with immunofluorescence microscopy, we showed that SSP3 is expressed in mosquito midgut oocyst sporozoites, exhibiting an intracellular localization. In sporozoites derived from the mosquito salivary glands, however, SSP3 localized predominantly to the sporozoite surface as determined by immunoelectron microscopy. However, the ectodomain of SSP3 appeared to be inaccessible to antibodies in nonpermeabilized salivary gland sporozoites. Antibody-induced shedding of the major surface protein circumsporozoite protein (CSP) exposed the SSP3 ectodomain to antibodies in some sporozoites. Targeted deletion ofSSP3adversely affectedin vitrosporozoite gliding motility, which, surprisingly, impacted neither their cell traversal capacity, host cell invasionin vitro, nor infectivityin vivo. Together, these data reveal a previously unappreciated complexity of thePlasmodiumsporozoite surface proteome and the roles of surface proteins in distinct biological activities of sporozoites.


2018 ◽  
Vol 86 (10) ◽  
Author(s):  
Supriya Shukla ◽  
Edward T. Richardson ◽  
Michael G. Drage ◽  
W. Henry Boom ◽  
Clifford V. Harding

ABSTRACTMycobacterium tuberculosiscauses persistent infection due to its ability to evade host immune responses.M. tuberculosisinduces Toll-like receptor 2 (TLR2) signaling, which influences immune responses toM. tuberculosis. TLR2 agonists expressed byM. tuberculosisinclude lipoproteins (e.g., LprG), the glycolipid phosphatidylinositol mannoside 6 (PIM6), and the lipoglycan lipomannan (LM). AnotherM. tuberculosislipoglycan, mannose-capped lipoarabinomannan (ManLAM), lacks TLR2 agonist activity. In contrast, PILAM, fromMycobacterum smegmatis, does have TLR2 agonist activity. Our understanding of howM. tuberculosislipoproteins and lipoglycans interact with TLR2 is limited, and binding of these molecules to TLR2 has not been measured directly. Here, we directly measuredM. tuberculosislipoprotein and lipoglycan binding to TLR2 and its partner receptor, TLR1. LprG, LAM, and LM were all found to bind to TLR2 in the absence of TLR1, but not to TLR1 in the absence of TLR2. Trimolecular interactions were revealed by binding of TLR2-LprG or TLR2-PIM6 complexes to TLR1, whereas binding of TLR2 to TLR1 was not detected in the absence of the lipoprotein or glycolipid. ManLAM exhibited low affinity for TLR2 in comparison to PILAM, LM, and LprG, which correlated with reduced ability of ManLAM to induce TLR2-mediated extracellular-signal-regulated kinase (ERK) activation and tumor necrosis factor alpha (TNF-α) secretion in macrophages. We provide the first direct affinity measurement and kinetic analysis ofM. tuberculosislipoprotein and lipoglycan binding to TLR2. Our results demonstrate that binding affinity correlates with the functional ability of agonists to induce TLR2 signaling.


Sign in / Sign up

Export Citation Format

Share Document