scholarly journals Scratching the Surface: Bacterial Cell Envelopes at the Nanoscale

mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Albertus Viljoen ◽  
Simon J. Foster ◽  
Georg E. Fantner ◽  
Jamie K. Hobbs ◽  
Yves F. Dufrêne

ABSTRACT The bacterial cell envelope is essential for viability, the environmental gatekeeper and first line of defense against external stresses. For most bacteria, the envelope biosynthesis is also the site of action of some of the most important groups of antibiotics. It is a complex, often multicomponent structure, able to withstand the internally generated turgor pressure. Thus, elucidating the architecture and dynamics of the cell envelope is important, to unravel not only the complexities of cell morphology and maintenance of integrity but also how interventions such as antibiotics lead to death. To address these questions requires the capacity to visualize the cell envelope in situ via high-spatial resolution approaches. In recent years, atomic force microscopy (AFM) has brought novel molecular insights into the assembly, dynamics, and functions of bacterial cell envelopes. The ultrafine resolution and physical sensitivity of the technique have revealed a wealth of ultrastructural features that are invisible to traditional optical microscopy techniques or imperceptible in their true physiological state by electron microscopy. Here, we discuss recent progress in our use of AFM imaging for understanding the architecture and dynamics of the bacterial envelope. We survey recent studies that demonstrate the power of the technique to observe isolated membranes and live cells at (sub)nanometer resolution and under physiological conditions and to track in vitro structural dynamics in response to growth or to drugs.

2018 ◽  
Vol 64 (9) ◽  
pp. 601-617 ◽  
Author(s):  
Cezar M. Khursigara ◽  
Susan F. Koval ◽  
Dianne M. Moyles ◽  
Robert J. Harris

A singular feature of all prokaryotic cells is the presence of a cell envelope composed of a cytoplasmic membrane and a cell wall. The introduction of bacterial cell fractionation techniques in the 1950s and 1960s along with developments in procedures for electron microscopy opened the window towards an understanding of the chemical composition and architecture of the cell envelope. This review traces the contribution of Terry Beveridge in these endeavours, beginning with his doctoral studies in the 1970s on the structure of paracrystalline surface arrays (S-layers), followed by an exploration of cryogenic methods for preserving bacteria for ultrastructural analyses. His insights are reflected in a current example of the contribution of cryo-electron microscopy to S-layer studies — the structure and assembly of the surface array of Caulobacter crescentus. The review then focuses on Terry’s contributions to imaging the ultrastructure of bacterial cell envelopes and to the development of cryo-electron microscopy techniques, including the use of CEMOVIS (Cryo-electron Microscopy of Vitreous Sections) to “see” the ultrastructure of the Gram-positive cell envelope — his last scientific endeavour.


2017 ◽  
Vol 8 ◽  
pp. 1494-1501 ◽  
Author(s):  
Svitlana Prylutska ◽  
Svitlana Politenkova ◽  
Kateryna Afanasieva ◽  
Volodymyr Korolovych ◽  
Kateryna Bogutska ◽  
...  

The self-organization of C60 fullerene and cisplatin in aqueous solution was investigated using the computer simulation, dynamic light scattering and atomic force microscopy techniques. The results evidence the complexation between the two compounds. The genotoxicity of С60 fullerene, Cis and their complex was evaluated in vitro with the comet assay using human resting lymphocytes and lymphocytes after blast transformation. The cytotoxicity of the mentioned compounds was estimated by Annexin V/PI double staining followed by flow cytometry. The results clearly demonstrate that water-soluble C60 fullerene nanoparticles (0.1 mg/mL) do not induce DNA strand breaks in normal and transformed cells. C60 fullerene in the mixture with Cis does not influence genotoxic Cis activity in vitro, affects the cell-death mode in treated resting human lymphocytes and reduces the fraction of necrotic cells.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Tyson Carter ◽  
Ryan N. C. Buensuceso ◽  
Stephanie Tammam ◽  
Ryan P. Lamers ◽  
Hanjeong Harvey ◽  
...  

ABSTRACT Type IVa pili (T4aP) are ubiquitous microbial appendages used for adherence, twitching motility, DNA uptake, and electron transfer. Many of these functions depend on dynamic assembly and disassembly of the pilus by a megadalton-sized, cell envelope-spanning protein complex located at the poles of rod-shaped bacteria. How the T4aP assembly complex becomes integrated into the cell envelope in the absence of dedicated peptidoglycan (PG) hydrolases is unknown. After ruling out the potential involvement of housekeeping PG hydrolases in the installation of the T4aP machinery in Pseudomonas aeruginosa, we discovered that key components of inner (PilMNOP) and outer (PilQ) membrane subcomplexes are recruited to future sites of cell division. Midcell recruitment of a fluorescently tagged alignment subcomplex component, mCherry-PilO, depended on PilQ secretin monomers—specifically, their N-terminal PG-binding AMIN domains. PilP, which connects PilO to PilQ, was required for recruitment, while PilM, which is structurally similar to divisome component FtsA, was not. Recruitment preceded secretin oligomerization in the outer membrane, as loss of the PilQ pilotin PilF had no effect on localization. These results were confirmed in cells chemically blocked for cell division prior to outer membrane invagination. The hub protein FimV and a component of the polar organelle coordinator complex—PocA—were independently required for midcell recruitment of PilO and PilQ. Together, these data suggest an integrated, energy-efficient strategy for the targeting and preinstallation—rather than retrofitting—of the T4aP system into nascent poles, without the need for dedicated PG-remodeling enzymes. IMPORTANCE The peptidoglycan (PG) layer of bacterial cell envelopes has limited porosity, representing a physical barrier to the insertion of large protein complexes involved in secretion and motility. Many systems include dedicated PG hydrolase components that create space for their insertion, but the ubiquitous type IVa pilus (T4aP) system lacks such an enzyme. Instead, we found that components of the T4aP system are recruited to future sites of cell division, where they could be incorporated into the cell envelope during the formation of new poles, eliminating the need for PG hydrolases. Targeting depends on the presence of septal PG-binding motifs in specific components, as removal of those motifs causes delocalization. This preinstallation strategy for the T4aP assembly system would ensure that both daughter cells are poised to extrude pili from new poles as soon as they separate from one another. IMPORTANCE The peptidoglycan (PG) layer of bacterial cell envelopes has limited porosity, representing a physical barrier to the insertion of large protein complexes involved in secretion and motility. Many systems include dedicated PG hydrolase components that create space for their insertion, but the ubiquitous type IVa pilus (T4aP) system lacks such an enzyme. Instead, we found that components of the T4aP system are recruited to future sites of cell division, where they could be incorporated into the cell envelope during the formation of new poles, eliminating the need for PG hydrolases. Targeting depends on the presence of septal PG-binding motifs in specific components, as removal of those motifs causes delocalization. This preinstallation strategy for the T4aP assembly system would ensure that both daughter cells are poised to extrude pili from new poles as soon as they separate from one another.


2021 ◽  
Author(s):  
Albertus Viljoen ◽  
Esther Räth ◽  
John D. Mckinney ◽  
Georg E. Fantner ◽  
Yves F. Dufrêne

Mycobacteria have unique cell envelopes, surface properties and growth dynamics, which all play a part in the ability of these important pathogens to infect, evade host immunity, disseminate and to resist antibiotic challenges. Recent atomic force microscopy (AFM) studies have brought new insights into the nanometre-scale ultrastructural and mechanical properties of mycobacteria. The molecular forces with which mycobacterial adhesins bind to host factors, like heparin and fibronectin, and the hydrophobic properties of the mycomembrane have been unravelled by AFM force spectroscopy studies. Real-time correlative AFM and fluorescence imaging have delineated a complex interplay between surface ultrastructure, tensile stresses within the cell envelope and cellular processes leading to division. The unique capabilities of AFM, which include sub-diffraction limit topographic imaging and piconewton force sensitivity, have great potential to resolve important questions that remain unanswered on the molecular interactions, surface properties and growth dynamics of this important class of pathogens.


1994 ◽  
Vol 107 (2) ◽  
pp. 693-700 ◽  
Author(s):  
A.C. Steven ◽  
P.M. Steinert

Terminally differentiated mammalian epidermal cells are lined with a 15 nm thick layer of proteins cross-linked by isodipeptide and disulfide bonds, called the cornified cell envelope (CE). A number of proteins, including involucrin, loricrin, cystatin A, filaggrin, a cysteine-rich protein (CRP) and the ‘small proline-rich’ proteins (SPRRs) have been reported to be components of this complex, but little information has been obtained as to their relative abundances because the acute insolubility of the CEs has precluded direct methods of analysis. To address this question, we have determined the amino acid compositions of isolated CEs, and then modelled them in terms of linear combinations of the candidate proteins. The results show that stratum corneum CEs have a loricrin content of 65–70% (w/w) in human, and 80–85% in mouse. In human epidermal CEs, the secondary contributors are filaggrin and CRP (each approximately 10%), with smaller amounts of involucrin, SPRR and cystatin A (2-5% each) also present. Mouse epidermal CEs have about the same amount of filaggrin and somewhat more SPRR, but only trace amounts of the other proteins. In marked contrast, the major constituents of the CEs of cultured keratinocytes induced to terminal differentiation in vitro are cystatin A, involucrin and CRP (each approximately 30%). No significant amount of loricrin was detected except in sloughed mouse cells, which represent a more advanced state of terminal differentiation than attached cells.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 253 (1) ◽  
pp. 153-160 ◽  
Author(s):  
S Richards ◽  
I R Scott ◽  
C R Harding ◽  
J E Liddell ◽  
G M Powell ◽  
...  

A substrate of transglutaminase, specific to the epidermis, was identified, by fluorescent and radioactive labelling with the lysine analogues dansylcadaverine and [14C]putrescine respectively, in newborn-rat epidermal homogenates and whole-skin organ cultures. The labelled analogues were preferentially incorporated into the stratum-corneum protein filaggrin in a Ca2+-dependent manner in both ‘in vitro’ systems. When filaggrin was labelled in vivo with [3H]histidine and then incubated with rat epidermal preparations, the label was rendered SDS/thiol-insoluble. Incorporation of [3H]filaggrin into the insoluble envelope fraction was Ca2+-dependent and inhibited by EDTA and exogenous amines. Antisera to newborn-rat filaggrin cross-reacted with purified newborn-rat cell envelopes, and this reaction was blocked by adsorbing the antiserum with purified filaggrin. Quantification of the ‘envelope-bound’ filaggrin showed it to be a significant component, accounting for approx. 10% of the cell-envelope protein.


2018 ◽  
Vol 19 (10) ◽  
pp. 2984 ◽  
Author(s):  
Adrian Nievergelt ◽  
Charlène Brillard ◽  
Haig Eskandarian ◽  
John McKinney ◽  
Georg Fantner

Imaging living cells by atomic force microscopy (AFM) promises not only high-resolution topographical data, but additionally, mechanical contrast, both of which are not obtainable with other microscopy techniques. Such imaging is however challenging, as cells need to be measured with low interaction forces to prevent either deformation or detachment from the surface. Off-resonance modes which periodically probe the surface have been shown to be advantageous, as they provide excellent force control combined with large amplitudes, which help reduce lateral force interactions. However, the low actuation frequency in traditional off-resonance techniques limits the imaging speed significantly. Using photothermal actuation, we probe the surface by directly actuating the cantilever. Due to the much smaller mass that needs to be actuated, the achievable measurement frequency is increased by two orders of magnitude. Additionally, photothermal off-resonance tapping (PORT) retains the precise force control of conventional off-resonance modes and is therefore well suited to gentle imaging. Here, we show how photothermal off-resonance tapping can be used to study live cells by AFM. As an example of imaging mammalian cells, the initial attachment, as well as long-term detachment, of human thrombocytes is presented. The membrane disrupting effect of the antimicrobial peptide CM-15 is shown on the cell wall of Escherichia coli. Finally, the dissolution of the cell wall of Bacillus subtilis by lysozyme is shown. Taken together, these evolutionarily disparate forms of life exemplify the usefulness of PORT for live cell imaging in a multitude of biological disciplines.


2019 ◽  
Author(s):  
Dennis J Doorduijn ◽  
Bart W Bardoel ◽  
Dani AC Heesterbeek ◽  
Maartje Ruyken ◽  
Georgina Benn ◽  
...  

AbstractAn important effector function of the human complement system is to directly kill Gram-negative bacteria via Membrane Attack Complex (MAC) pores. MAC pores are assembled when surface-bound convertase enzymes convert C5 into C5b, which together with C6, C7, C8 and multiple copies of C9 forms a transmembrane pore that damages the bacterial cell envelope. Recently, we found that bacterial killing by MAC pores requires local conversion of C5 by surface-bound convertases. In this study we aimed to understand why local assembly of MAC pores is essential for bacterial killing. Here, we show that rapid interaction of C7 with C5b6 is required to form bactericidal MAC pores. Binding experiments with fluorescently labelled C6 show that C7 prevents release of C5b6 from the bacterial surface. Moreover, trypsin shaving experiments and atomic force microscopy revealed that this rapid interaction between C7 and C5b6 is crucial to efficiently anchor C5b-7 to the bacterial cell envelope and form complete MAC pores. Using complement-resistant clinical E. coli strains, we show that bacterial pathogens can prevent complement-dependent killing by interfering with the anchoring of C5b-7. While C5 convertase assembly was unaffected, these resistant strains blocked efficient anchoring of C5b-7 and thus prevented stable insertion of MAC pores into the bacterial cell envelope. Altogether, these findings provide basic molecular insights into how bactericidal MAC pores are assembled and how bacteria evade MAC-dependent killing.


Author(s):  
J. Carnahan ◽  
C. C. Brinton ◽  
J. E. McNary

The presence of a structured external surface layer of the cell envelope from Spirillum serpens was first described by Houwink. This “macromolecular monolayer” consists of a hexagonal array of particles. A few examples of tetragonal patterns in bacterial cell envelopes have been reported but the structural elements have not been chemically characterized. The present study is directed towards the analysis of a tetragonal pattern of a Bacillus species isolated from sewage.The pattern could be observed on cells from young cultures negatively stained with potassium phosphotungstate (PTA). Cultures stored in the cold for several days or weeks undergo autolysis yielding large sheets of intact pattern. Electron micrographs of overlapping macromolecular monolayers show characteristic Moiré patterns (Fig. l).


Sign in / Sign up

Export Citation Format

Share Document