scholarly journals An Escherichia coli Mutant That Makes Exceptionally Long Cells

2015 ◽  
Vol 197 (8) ◽  
pp. 1507-1514 ◽  
Author(s):  
Ziad W. El-Hajj ◽  
Elaine B. Newman

ABSTRACTAlthoughEscherichia coliis a very small (1- to 2-μm) rod-shaped cell, here we describe anE. colimutant that forms enormously long cells in rich media such as Luria broth, as long indeed as 750 μm. Theseextremelyelongated (eel) cells are as long as the longest bacteria known and have no internal subdivisions. They are metabolically competent, elongate rapidly, synthesize DNA, and distribute cell contents along this length. They lack only the ability to divide. The concentration of the essential cell division protein FtsZ is reduced in these eel cells, and increasing this concentration restores division.IMPORTANCEEscherichia coliis usually a very small bacterium, 1 to 2 μm long. We have isolated a mutant that forms enormously long cells, 700 times longer than the usualE. colicell.E. colifilaments that form under other conditions usually die within a few hours, whereas our mutant is fully viable even when it reaches such lengths. This mutant provides a useful tool for the study of aspects ofE. coliphysiology that are difficult to investigate with small cells.

mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Dev K. Ranjit ◽  
George W. Liechti ◽  
Anthony T. Maurelli

ABSTRACT Cell division is the ultimate process for the propagation of bacteria, and FtsZ is an essential protein used by nearly all bacteria for this function. Chlamydiae belong to a small group of bacteria that lack the universal cell division protein FtsZ but still divide by binary fission. Chlamydial MreB is a member of the shape-determining MreB/Mbl family of proteins responsible for rod shape morphology in Escherichia coli. Chlamydia also encodes a homolog of RodZ, an MreB assembly cytoskeletal protein that links MreB to cell wall synthesis proteins. We hypothesized that MreB directs cell division in Chlamydia and that chlamydial MreB could replace FtsZ function for cell division in E. coli. Overexpression of chlamydial mreB-rodZ in E. coli induced prominent morphological changes with production of large swollen or oval bacteria, eventually resulting in bacterial lysis. Low-level expression of chlamydial mreB-rodZ restored viability of a lethal ΔmreB mutation in E. coli, although the bacteria lost their typical rod shape and grew as rounded cells. When FtsZ activity was inhibited by overexpression of SulA in the ΔmreB mutant of E. coli complemented with chlamydial mreB-rodZ, spherical E. coli grew and divided. Localization studies using a fluorescent fusion chlamydial MreB protein indicated that chlamydial RodZ directs chlamydial MreB to the E. coli division septum. These results demonstrate that chlamydial MreB, in partnership with chlamydial RodZ, acts as a cell division protein. Our findings suggest that an mreB-rodZ-based mechanism allows Chlamydia to divide without the universal division protein FtsZ. IMPORTANCE The study of Chlamydia growth and cell division is complicated by its obligate intracellular nature and biphasic lifestyle. Chlamydia also lacks the universal division protein FtsZ. We employed the cell division system of Escherichia coli as a surrogate to identify chlamydial cell division proteins. We demonstrate that chlamydial MreB, together with chlamydial RodZ, forms a cell division and growth complex that can replace FtsZ activity and support cell division in E. coli. Chlamydial RodZ plays a major role in directing chlamydial MreB localization to the cell division site. It is likely that the evolution of chlamydial MreB and RodZ to form a functional cell division complex allowed Chlamydia to dispense with its FtsZ-based cell division machinery during genome reduction. Thus, MreB-RodZ represents a possible mechanism for cell division in other bacteria lacking FtsZ.


EcoSal Plus ◽  
2021 ◽  
Author(s):  
Petra Anne Levin ◽  
Anuradha Janakiraman

Decades of research, much of it in Escherichia coli , have yielded a wealth of insight into bacterial cell division. Here, we provide an overview of the E. coli division machinery with an emphasis on recent findings.


2017 ◽  
Vol 200 (2) ◽  
Author(s):  
Daniel E. Vega ◽  
William Margolin

ABSTRACTZipA is essential for cell division inEscherichia coli, acting early in the process to anchor polymers of FtsZ to the cytoplasmic membrane. Along with FtsA, FtsZ and ZipA form a proto-ring at midcell that recruits additional proteins to eventually build the division septum. Cells carrying the thermosensitivezipA1allele divide fairly normally at 30°C in rich medium but cease dividing at temperatures above 34°C, forming long filaments. In a search for suppressors of thezipA1allele, we found that deletions of specific genes involved in amino acid biosynthesis could partially rescue cell growth and division at 34°C or 37°C but not at 42°C. Notably, although a diverse group of amino acid biosynthesis gene deletions could partially rescue the growth ofzipA1cells at 34°C, only deletions of genes related to the biosynthesis of threonine, glycine, serine, and methionine could rescue growth at 37°C. Adding exogenous pyridoxal 5-phosphate (PLP), a cofactor for many of the enzymes affected by this study, partially suppressedzipA1mutant thermosensitivity. For many of the deletions, PLP had an additive rescuing effect on thezipA1mutant. Moreover, added PLP partially suppressed the thermosensitivity offtsQandftsKmutants and weakly suppressed anftsImutant, but it failed to suppressftsAorftsZthermosensitive mutants. Along with the ability of a deletion ofmetCto partially suppress theftsKmutant, our results suggest that perturbations of amino acid metabolic pathways, particularly those that redirect the flow of carbon away from the synthesis of threonine, glycine, or methionine, are able to partially rescue some cell division defects.IMPORTANCECell division of bacteria, such asEscherichia coli, is essential for their successful colonization. It is becoming increasingly clear that nutritional status and central metabolism can affect bacterial size and shape; for example, a metabolic enzyme (OpgH) can moonlight as a regulator of FtsZ, an essential cell division protein. Here, we demonstrate a link between amino acid metabolism and ZipA, another essential cell division protein that binds directly to FtsZ and tethers it to the cytoplasmic membrane. Our evidence suggests that altering flux through the methionine-threonine-glycine-serine pathways and supplementing with the enzyme cofactor pyridoxal-5-phosphate can partially compensate for an otherwise lethal defect in ZipA, as well as several other cell division proteins.


1998 ◽  
Vol 180 (5) ◽  
pp. 1296-1304 ◽  
Author(s):  
Xuan-chuan Yu ◽  
Anthony H. Tran ◽  
Qin Sun ◽  
William Margolin

ABSTRACT Escherichia coli cell division protein FtsK is a homolog of Bacillus subtilis SpoIIIE and appears to act late in the septation process. To determine whether FtsK localizes to the septum, we fused three N-terminal segments of FtsK to green fluorescent protein (GFP) and expressed them in E. colicells. All three segments were sufficient to target GFP to the septum, suggesting that as little as the first 15% of the protein is a septum-targeting domain. Localized fluorescence was detectable only in cells containing a visible midcell constriction, suggesting that FtsK targeting normally occurs only at a late stage of septation. The largest two FtsK-GFP fusions were able at least partially to complement the ftsK44 mutation in trans, suggesting that the N- and C-terminal domains are functionally separable. However, overproduction of FtsK-GFP resulted in a late-septation phenotype similar to that of ftsK44, with fluorescent dots localized at the blocked septa, suggesting that high levels of the N-terminal domain may still localize but also inhibit FtsK activity. Interestingly, under these conditions fluorescence was also sometimes localized as bands at potential division sites, suggesting that FtsK-GFP is capable of targeting very early. In addition, FtsK-GFP localized to potential division sites in cephalexin-induced andftsI mutant filaments, further supporting the idea that FtsK-GFP can target early, perhaps by recognizing FtsZ directly. This hypothesis was supported by the failure of FtsK-GFP to localize inftsZ mutant filaments. In ftsK44 mutant filaments, FtsA and FtsZ were usually localized to potential division sites between the blocked septa. When the ftsK44 mutation was incorporated into the FtsK-GFP fusions, localization to midcell ranged between very weak and undetectable, suggesting that the FtsK44 mutant protein is defective in targeting the septum.


mBio ◽  
2021 ◽  
Author(s):  
Nicholas P. Greene ◽  
Vassilis Koronakis

In Escherichia coli and other Gram-negative bacteria, tripartite efflux pumps (TEPs) span the entire cell envelope and serve to remove noxious molecules from the cell. CusBCA is a TEP responsible for copper and silver detoxification in E. coli powered by the resistance-nodulation-cell division (RND) transporter, CusA.


2004 ◽  
Vol 186 (20) ◽  
pp. 6728-6737 ◽  
Author(s):  
Astrid Ursinus ◽  
Fusinita van den Ent ◽  
Sonja Brechtel ◽  
Miguel de Pedro ◽  
Joachim-Volker Höltje ◽  
...  

ABSTRACT The binding of the essential cell division protein FtsN of Escherichia coli to the murein (peptidoglycan) sacculus was studied. Soluble truncated variants of FtsN, including the complete periplasmic part of the protein as well as a variant containing only the C-terminal 77 amino acids, did bind to purified murein sacculi isolated from wild-type cells. FtsN variants lacking this C-terminal region showed reduced or no binding to murein. Binding of FtsN was severely reduced when tested against sacculi isolated either from filamentous cells with blocked cell division or from chain-forming cells of a triple amidase mutant. Binding experiments with radioactively labeled murein digestion products revealed that the longer murein glycan strands (>25 disaccharide units) showed a specific affinity to FtsN, but neither muropeptides, peptides, nor short glycan fragments bound to FtsN. In vivo FtsN could be cross-linked to murein with the soluble disulfide bridge containing cross-linker DTSSP. Less FtsN, but similar amounts of OmpA, was cross-linked to murein of filamentous or of chain-forming cells compared to levels in wild-type cells. Expression of truncated FtsN variants in cells depleted in full-length FtsN revealed that the presence of the C-terminal murein-binding domain was not required for cell division under laboratory conditions. FtsN was present in 3,000 to 6,000 copies per cell in exponentially growing wild-type E. coli MC1061. We discuss the possibilities that the binding of FtsN to murein during cell division might either stabilize the septal region or might have a function unrelated to cell division.


2011 ◽  
Vol 77 (11) ◽  
pp. 3653-3662 ◽  
Author(s):  
Preeti Sule ◽  
Shelley M. Horne ◽  
Catherine M. Logue ◽  
Birgit M. Prüß

ABSTRACTTo understand the continuous problems thatEscherichia coliO157:H7 causes as food pathogen, this study assessed global gene regulation in bacteria growing on meat. Since FlhD/FlhC ofE. coliK-12 laboratory strains was previously established as a major control point in transducing signals from the environment to several cellular processes, this study compared the expression pattern of anE. coliO157:H7 parent strain to that of its isogenicflhCmutant. This was done with bacteria that had been grown on meat. Microarray experiments revealed 287 putative targets of FlhC. Real-time PCR was performed as an alternative estimate of transcription and confirmed microarray data for 13 out of 15 genes tested (87%). The confirmed genes are representative of cellular functions, such as central metabolism, cell division, biofilm formation, and pathogenicity. An additional 13 genes from the same cellular functions that had not been hypothesized as being regulated by FlhC by the microarray experiment were tested with real-time PCR and also exhibited higher expression levels in theflhCmutant than in the parent strain. Physiological experiments were performed and confirmed that FlhC reduced the cell division rate, the amount of biofilm biomass, and pathogenicity in a chicken embryo lethality model. Altogether, this study provides valuable insight into the complex regulatory network of the pathogen that enables its survival under various environmental conditions. This information may be used to develop strategies that could be used to reduce the number of cells or pathogenicity ofE. coliO157:H7 on meat by interfering with the signal transduction pathways.


2012 ◽  
Vol 80 (3) ◽  
pp. 1232-1242 ◽  
Author(s):  
Jason W. Sahl ◽  
David A. Rasko

EnterotoxigenicEscherichia coli(ETEC) is an important pathogenic variant (pathovar) ofE. coliin developing countries from a human health perspective, causing significant morbidity and mortality. Previous studies have examined specific regulatory networks in ETEC, although little is known about the global effects of inter- and intrakingdom signaling on the expression of virulence and colonization factors in ETEC. In this study, anE. coli/Shigellapan-genome microarray, combined with quantitative reverse transcriptase PCR (qRT-PCR) and RNA sequencing (RNA-seq), was used to quantify the expression of ETEC virulence and colonization factors. Biologically relevant chemical signals were combined with ETEC isolate E24377A during growth in either Luria broth (LB) or Dulbecco's modified Eagle medium (DMEM), and transcription was examined during different phases of the growth cycle; chemical signals examined included glucose, bile salts, and preconditioned media fromE. coli/Shigellaisolates. The results demonstrate that the presence of bile salts, which are found in the intestine and thought to be bactericidal, upregulates the expression of many ETEC virulence factors, including heat-stable (estA) and heat-labile (eltA) enterotoxin genes. In contrast, the ETEC colonization factors CS1 and CS3 were downregulated in the presence of bile, consistent with findings in studies of other enteric pathogens. RNA-seq analysis demonstrated that one of the most differentially expressed genes in the presence of bile is a unique plasmid-encoded AraC-like transcriptional regulator (peaR); other previously unknown genetic elements were found as well. These results provide transcriptional targets and putative mechanisms that should help improve understanding of the global regulatory networks and virulence expression in this important human pathogen.


2018 ◽  
Vol 200 (9) ◽  
Author(s):  
Terrens N. V. Saaki ◽  
Henrik Strahl ◽  
Leendert W. Hamoen

ABSTRACT Chemoreceptors are localized at the cell poles of Escherichia coli and other rod-shaped bacteria. Over the years, different mechanisms have been put forward to explain this polar localization, including stochastic clustering, membrane curvature-driven localization, interactions with the Tol-Pal complex, and nucleoid exclusion. To evaluate these mechanisms, we monitored the cellular localization of the aspartate chemoreceptor Tar in different deletion mutants. We did not find any indication for either stochastic cluster formation or nucleoid exclusion. However, the presence of a functional Tol-Pal complex appeared to be essential to retain Tar at the cell poles. Interestingly, Tar still accumulated at midcell in tol and in pal deletion mutants. In these mutants, the protein appears to gather at the base of division septa, a region characterized by strong membrane curvature. Chemoreceptors, like Tar, form trimers of dimers that bend the cell membrane due to a rigid tripod structure. The curvature approaches the curvature of the cell membrane generated during cell division, and localization of chemoreceptor tripods at curved membrane areas is therefore energetically favorable, as it lowers membrane tension. Indeed, when we introduced mutations in Tar that abolish the rigid tripod structure, the protein was no longer able to accumulate at midcell or the cell poles. These findings favor a model where chemoreceptor localization in E. coli is driven by strong membrane curvature and association with the Tol-Pal complex. IMPORTANCE Bacteria have exquisite mechanisms to sense and adapt to the environment they live in. One such mechanism involves the chemotaxis signal transduction pathway, in which chemoreceptors specifically bind certain attracting or repelling molecules and transduce the signals to the cell. In different rod-shaped bacteria, these chemoreceptors localize specifically to cell poles. Here, we examined the polar localization of the aspartate chemoreceptor Tar in E. coli and found that membrane curvature at cell division sites and the Tol-Pal protein complex localize Tar at cell division sites, the future cell poles. This study shows how membrane curvature can guide localization of proteins in a cell.


2018 ◽  
Vol 200 (13) ◽  
Author(s):  
Matthew A. Jorgenson ◽  
Kevin D. Young

ABSTRACT While screening the Pfam database for novel peptidoglycan (PG) binding modules, we identified the OapA domain, which is annotated as a LysM-like domain. LysM domains bind PG and mediate localization to the septal ring. In the Gram-negative bacterium Escherichia coli , an OapA domain is present in YtfB, an inner membrane protein of unknown function but whose overproduction causes cells to filament. Together, these observations suggested that YtfB directly affects cell division, most likely through its OapA domain. Here, we show that YtfB accumulates at the septal ring and that its action requires the division-initiating protein FtsZ and, to a lesser extent, ZipA, an early recruit to the septalsome. While the loss of YtfB had no discernible impact, a mutant lacking both YtfB and DedD (a known cell division protein) grew as filamentous cells. The YtfB OapA domain by itself also localized to sites of division, and this localization was enhanced by the presence of denuded PGs. Finally, the OapA domain bound PG, though binding did not depend on the formation of denuded glycans. Collectively, our findings demonstrate that YtfB is a cell division protein whose function is related to cell wall hydrolases. IMPORTANCE All living cells must divide in order to thrive. In bacteria, this involves the coordinated activities of a large number of proteins that work in concert to constrict the cell. Knowing which proteins contribute to this process and how they function is fundamental. Here, we identify a new member of the cell division apparatus in the Gram-negative bacterium Escherichia coli whose function is related to the generation of a transient cell wall structure. These findings deepen our understanding of bacterial cell division.


Sign in / Sign up

Export Citation Format

Share Document