scholarly journals Dynamic Mechanisms of the Bactericidal Action of an Al2O3-TiO2-Ag Granular Material on an Escherichia coli Strain

2015 ◽  
Vol 81 (20) ◽  
pp. 7135-7142 ◽  
Author(s):  
Marie-Anne Tartanson ◽  
Laurence Soussan ◽  
Matthieu Rivallin ◽  
Sophie Pecastaings ◽  
Cristian V. Chis ◽  
...  

ABSTRACTThe bactericidal activity of an Al2O3-TiO2-Ag granular material against anEscherichia colistrain was confirmed by a culture-based method. In particular, 100% of microorganisms were permanently inactivated in 30 to 45 min. The present work aimed to investigate the mechanisms of the bactericidal action of this material and their dynamics onEscherichia coliusing different techniques. Observations by transmission electron microscopy (TEM) at different times of disinfection revealed morphological changes in the bacteria as soon as they were put in contact with the material. Notably highlighted were cell membrane damage; cytoplasm detachment; formation of vacuoles, possibly due to DNA condensation, in association with regions exhibiting different levels of electron density; and membrane lysis. PCR and flow cytometry analyses were used to confirm and quantify the observations of cell integrity. The direct exposure of cells to silver, combined with the oxidative stress induced by the reactive oxygen species (ROS) generated, was identified to be responsible for these morphological alterations. From the first 5 min of treatment with the Al2O3-TiO2-Ag material, 98% ofE. coliisolates were lysed. From 30 min, cell viability decreased to reach total inactivation, although approximately 1% of permeableE. colicells and 1% of intact cells (105genomic units · ml−1) were evidenced. This study demonstrates that the bactericidal effect of the material results from a synergic action of desorbed and supported silver. Supported silver was shown to generate the ROS evidenced.

1970 ◽  
Vol 1 (3) ◽  
pp. 311-318
Author(s):  
D. Friedberg ◽  
I. Friedberg ◽  
M. Shilo

Interaction of lysosomal fraction with Escherichia coli caused damage to the cell envelope of these intact cells and to the cytoplasmic membrane of E. coli spheroplasts. The damage to the cytoplasmic membrane was manifested in the release of 260-nm absorbing material and β-galactosidase from the spheroplasts, and by increased permeability of cryptic cells to O -nitrophenyl-β- d -galactopyranoside; damage to the cell wall was measured by release of alkaline phosphatase. Microscope observation showed morphological changes in the cell envelope.


2017 ◽  
Vol 5 (19) ◽  
Author(s):  
Lutz Geue ◽  
Christian Menge ◽  
Christian Berens ◽  
Stefanie A. Barth

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) are important zoonotic enteric pathogens with the main reservoir in cattle. Here, we present the genomes of two STEC strains and one atypical enteropathogenic E. coli strain from cattle origin, obtained during a longitudinal study in German cattle herds.


2015 ◽  
Vol 83 (5) ◽  
pp. 1893-1903 ◽  
Author(s):  
Daniela Gutiérrez ◽  
Mirka Pardo ◽  
David Montero ◽  
Angel Oñate ◽  
Mauricio J. Farfán ◽  
...  

EnterotoxigenicEscherichia coli(ETEC), a leading cause of acute diarrhea, colonizes the intestine by means of adhesins. However, 15 to 50% of clinical isolates are negative for known adhesins, making it difficult to identify antigens for broad-coverage vaccines. The ETEC strain 1766a, obtained from a child with watery diarrhea in Chile, harbors the colonization factor CS23 but is negative for other known adhesins. One clone, derived from an ETEC 1766a genomic library (clone G10), did not produce CS23 yet was capable of adhering to Caco-2 cells. The goal of this study was to identify the gene responsible for this capacity. Random transposon-based mutagenesis allowed the identification of a 4,110-bp gene that codes for a homologue of the temperature-sensitive hemagglutinin (Tsh) autotransporter described in avianE. colistrains (97% identity, 90% coverage) and that is called TleA (Tsh-like ETEC autotransporter) herein. An isogenic ETEC 1766a strain with atleAmutation showed an adhesion level similar to that of the wild-type strain, suggesting that the gene does not direct attachment to Caco-2 cells. However, expression oftleAconferred the capacity for adherence to nonadherentE. coliHB101. This effect coincided with the detection of TleA on the surface of nonpermeabilized bacteria, while, conversely, ETEC 1766a seems to secrete most of the produced autotransporter to the medium. On the other hand, TleA was capable of degrading bovine submaxillary mucin and leukocyte surface glycoproteins CD45 and P-selectin glycoprotein ligand 1 (PSGL-1). These results suggest that TleA promotes colonization of the intestinal epithelium and that it may modulate the host immune response.


2013 ◽  
Vol 81 (4) ◽  
pp. 1078-1089 ◽  
Author(s):  
Yogitha N. Srikhanta ◽  
Dianna M. Hocking ◽  
Judyta Praszkier ◽  
Matthew J. Wakefield ◽  
Roy M. Robins-Browne ◽  
...  

ABSTRACTAraC-like regulators play a key role in the expression of virulence factors in enteric pathogens, such as enteropathogenicEscherichia coli(EPEC), enterotoxigenicE. coli, enteroaggregativeE. coli, andCitrobacter rodentium. Bioinformatic analysis of the genome of rabbit-specific EPEC (REPEC) strain E22 (O103:H2) revealed the presence of a gene encoding an AraC-like regulatory protein, RegR, which shares 71% identity to the global virulence regulator, RegA, ofC. rodentium. Microarray analysis demonstrated that RegR exerts 25- to 400-fold activation on transcription of several genes encoding putative virulence-associated factors, including a fimbrial operon (SEF14), a serine protease, and an autotransporter adhesin. These observations were confirmed by proteomic analysis of secreted and heat-extracted surface-associated proteins. The mechanism of RegR-mediated activation was investigated by using its most highly upregulated gene target,sefA. Transcriptional analyses and electrophoretic mobility shift assays showed that RegR activates the expression ofsefAby binding to a region upstream of thesefApromoter, thereby relieving gene silencing by the global regulatory protein H-NS. Moreover, RegR was found to contribute significantly to virulence in a rabbit infection experiment. Taken together, our findings indicate that RegR controls the expression of a series of accessory adhesins that significantly enhance the virulence of REPEC strain E22.


2021 ◽  
Vol 10 (8) ◽  
Author(s):  
Jacob R. Elder ◽  
Yanhong Liu ◽  
Siddhartha Kanrar ◽  
Andrew Gehring ◽  
Aixia Xu ◽  
...  

ABSTRACT Escherichia coli strain FEX669 was isolated from retail ground chicken and shown to contain the extraintestinal pathogenic E. coli (ExPEC) virulence genes sfaD, focC, and iutA. Because this presumptive ExPEC strain was isolated from a retail food item and it was a weak biofilm former, it was characterized using whole-genome sequencing using the PacBio RS II platform. Genomic analysis showed that the FEX669 chromosome is 4,973,943 bp long, with a GC content of 50.47%, and is accompanied by a ColV plasmid that is 237,102 bp long, with a GC content of 50.49%.


2017 ◽  
Vol 5 (31) ◽  
Author(s):  
Hiren Ghosh ◽  
Boyke Bunk ◽  
Swapnil Doijad ◽  
Judith Schmiedel ◽  
Linda Falgenhauer ◽  
...  

ABSTRACT Escherichia coli sequence type 131 (ST131) is the most frequent antimicrobial-resistant lineage of E. coli, propagating extended-spectrum β-lactamases (ESBL) worldwide. Recently, an alarming rate of increase in isolates of the sublineage C1/H30R-bla CTX-M-27 of ST131 in geographically distant countries was reported. Here, we present the complete genome sequence of the ST131 sublineage C1/H30R E. coli isolate harboring bla CTX-M-27 from Germany.


2013 ◽  
Vol 57 (12) ◽  
pp. 5830-5835 ◽  
Author(s):  
T. Guillard ◽  
E. Cambau ◽  
F. Chau ◽  
L. Massias ◽  
C. de Champs ◽  
...  

ABSTRACTAAC(6′)-Ib-cr is a plasmid-mediated quinolone resistance mechanism described worldwide forEscherichia coli. Since it confersin vitroonly a low level of resistance to ciprofloxacin, we evaluated its impact on thein vivoactivity of ciprofloxacin. Isogenic strains were obtained by transferring plasmid p449, harboringaac(6′)-Ib-cr, into the quinolone-susceptible strainE. coliCFT073-RR and its D87GgyrAmutant. MICs were 0.015, 0.06, 0.25, and 0.5 μg/ml againstE. colistrains CFT073-RR, CFT073-RR/p449, CFT073-RR GyrAr, and CFT073-RR GyrAr/p449, respectively. Bactericidal activity was reduced at 1× the MIC for the three resistant derivatives, while at a fixed concentration of 0.5 μg/ml, 99.9% killing was observed for all strains exceptE. coliCFT073-RR GyrAr/p449. In the murine model of pyelonephritis, an optimal regimen of ciprofloxacin (10 mg/kg of body weight twice a day [b.i.d.]) significantly decreased the bacterial count in the kidneys of mice infected withE. coliCFT073 (1.6 versus 4.3 log10CFU/g of kidney compared to untreated controls;P= 0.0001), while no significant decrease was observed forE. coliCFT073-RR/p449 (2.7 versus 3.1 log10CFU/g;P= 0.84),E. coliCFT073-RR GyrAr(4.2 versus 4.1 log10CFU/g;P= 0.35), orE. coliCFT073-RR GyrAr/p449 (2.9 versus 3.6 log10CFU/g;P= 0.47). While pharmacokinetic and pharmacodynamic (PK/PD) parameters accounted for ciprofloxacin failure againstgyrA-containing mutants, this was not the case for theaac(6′)-Ib-cr-containing strains, suggesting anin situhydrolysis of ciprofloxacin in the latter case.


2015 ◽  
Vol 83 (11) ◽  
pp. 4185-4193 ◽  
Author(s):  
Kakolie Goswami ◽  
Chun Chen ◽  
Lingzi Xiaoli ◽  
Kathryn A. Eaton ◽  
Edward G. Dudley

ABSTRACTEscherichia coliO157:H7 is a notorious foodborne pathogen due to its low infectious dose and the disease symptoms it causes, which include bloody diarrhea and severe abdominal cramps. In some cases, the disease progresses to hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS), due to the expression of one or more Shiga toxins (Stx). Isoforms of Stx, including Stx2a, are encoded within temperate prophages. In the presence of certain antibiotics, phage induction occurs, which also increases the expression of toxin genes. Additionally, increased Stx2 accumulation has been reported when O157:H7 was cocultured with phage-susceptible nonpathogenicE. coli. This study characterized anE. coliO157:H7 strain, designated PA2, that belongs to the hypervirulent clade 8 cluster. Stx2a levels after ciprofloxacin induction were lower for PA2 than for the prototypical outbreak strains Sakai and EDL933. However, during coculture with the nonpathogenic strainE. coliC600, PA2 produced Stx2a levels that were 2- to 12-fold higher than those observed during coculture with EDL933 and Sakai, respectively. Germfree mice cocolonized by PA2 and C600 showed greater kidney damage, increased Stx2a accumulation in feces, and more visible signs of disease than mice given PA2 or C600 alone. These data suggest one mechanism by which microorganisms associated with the colonic microbiota could enhance the virulence ofE. coliO157:H7, particularly a subset of clade 8 strains.


2020 ◽  
Vol 9 (41) ◽  
Author(s):  
Munavvara Dzhuraeva ◽  
Mehrangez Shokirova ◽  
Ani Azaryan ◽  
Hovik Panosyan ◽  
Khursheda Bobodzhanova ◽  
...  

ABSTRACT The 4.6-Mbp draft genome sequence of Escherichia coli strain Tj, isolated from the Varzob River in Tajikistan, is presented. This strain possesses four prophage elements related to Shigella phage SfV, E. coli O157:H7-specific phage ϕV10, lambdoid phage HK225, and coliphage Ayreon. It contains a gene encoding a hemolysin E toxin.


mSystems ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Bradley W. Wright ◽  
Dominic Y. Logel ◽  
Mehdi Mirzai ◽  
Dana Pascovici ◽  
Mark P. Molloy ◽  
...  

ABSTRACT Measuring host-bacteriophage dynamics is an important approach to understanding bacterial survival functions and responses to infection. The model Microviridae bacteriophage φX174 is endemic to the human gut and has been studied for over 70 years, but the host response to infection has never been investigated in detail. To address this gap in our understanding of this important interaction within our microbiome, we have measured host Escherichia coli C proteomic and transcriptomic response to φX174 infection. We used mass spectrometry and RNA sequencing (RNA-seq) to identify and quantify all 11 φX174 proteins and over 1,700 E. coli proteins, enabling us to comprehensively map host pathways involved in φX174 infection. Most notably, we see significant host responses centered on membrane damage and remodeling, cellular chaperone and translocon activity, and lipoprotein processing, which we speculate is due to the peptidoglycan-disruptive effects of the φX174 lysis protein E on MraY activity. We also observe the massive upregulation of small heat shock proteins IbpA/B, along with other heat shock pathway chaperones, and speculate on how the specific characteristics of holdase protein activity may be beneficial for viral infections. Together, this study enables us to begin to understand the proteomic and transcriptomic host responses of E. coli to Microviridae infections and contributes insights to the activities of this important model host-phage interaction. IMPORTANCE A major part of the healthy human gut microbiome is the Microviridae bacteriophage, exemplified by the model φX174 phage, and their E. coli hosts. Although much has been learned from studying φX174 over the last half-century, until this work, the E. coli host response to infection has never been investigated in detail. We reveal the proteomic and transcriptomic pathways differentially regulated during the φX174 infection cycle and uncover the details of a coordinated cellular response to membrane damage that results in increased lipoprotein processing and membrane trafficking, likely due to the phage antibiotic-like lysis protein. We also reveal that small heat shock proteins IbpA/B are massively upregulated during infection and that these holdase chaperones are highly conserved across the domains of life, indicating that reliance on them is likely widespread across viruses.


Sign in / Sign up

Export Citation Format

Share Document