scholarly journals Interaction of FLASH with Arsenite Resistance Protein 2 Is Involved in Cell Cycle Progression at S Phase

2009 ◽  
Vol 29 (17) ◽  
pp. 4729-4741 ◽  
Author(s):  
Maria Kiriyama ◽  
Yohei Kobayashi ◽  
Motoki Saito ◽  
Fuyuki Ishikawa ◽  
Shin Yonehara

ABSTRACT FLASH has been shown to be required for S phase progression and to interact with a nuclear protein, ataxia-telangiectasia locus (NPAT), a component of Cajal bodies in the nucleus and an activator of histone transcription. We investigated the role of human FLASH by using an inducible FLASH knockdown system in the presence or absence of various mutant forms of mouse FLASH. While carboxyl-terminal deletion mutants of FLASH, which do not interact with NPAT, can support S phase progression, its amino-terminal deletion mutants, which are unable to self associate, cannot support S phase progression, replication-dependent histone transcription, or the formation of Cajal bodies. Furthermore, FLASH was shown to be associated with arsenite resistance protein 2 (ARS2) through its central region, which is composed of only 13 amino acids. The expression of ARS2 and the interaction between FLASH and ARS2 are required for S phase progression. Taking these results together, FLASH functions in S phase progression through interaction with ARS2.

2021 ◽  
Vol 22 (11) ◽  
pp. 5483
Author(s):  
Luisa F. Bustamante-Jaramillo ◽  
Celia Ramos ◽  
Cristina Martín-Castellanos

Cyclins and CDKs (Cyclin Dependent Kinases) are key players in the biology of eukaryotic cells, representing hubs for the orchestration of physiological conditions with cell cycle progression. Furthermore, as in the case of meiosis, cyclins and CDKs have acquired novel functions unrelated to this primal role in driving the division cycle. Meiosis is a specialized developmental program that ensures proper propagation of the genetic information to the next generation by the production of gametes with accurate chromosome content, and meiosis-specific cyclins are widespread in evolution. We have explored the diversification of CDK functions studying the meiosis-specific Crs1 cyclin in fission yeast. In addition to the reported role in DSB (Double Strand Break) formation, this cyclin is required for meiotic S-phase progression, a canonical role, and to maintain the architecture of the meiotic chromosomes. Crs1 localizes at the SPB (Spindle Pole Body) and is required to stabilize the cluster of telomeres at this location (bouquet configuration), as well as for normal SPB motion. In addition, Crs1 exhibits CDK(Cdc2)-dependent kinase activity in a biphasic manner during meiosis, in contrast to a single wave of protein expression, suggesting a post-translational control of its activity. Thus, Crs1 displays multiple functions, acting both in cell cycle progression and in several key meiosis-specific events.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi94-vi94
Author(s):  
Taylor Dismuke ◽  
Chaemin Lim ◽  
Timothy Gershon

Abstract CDK4/6 inhibition is a promising therapy for medulloblastoma, one of the most common malignant pediatric brain tumors. To improve pharmacokinetics, we developed a polyoxazoline nanoparticle-encapsulated formulation of the FDA-approved CDK4/6 inhibitor palbociclib (POx-palbo). We then administered POx-palbo to transgenic medulloblastoma-prone GFAP-Cre/SmoM2 mice, to determine the efficacy and mechanisms of action and resistance. We found that POx-palbo slowed tumor progression, but consistently failed to be curative. Further analysis showed that while CDK4/6 inhibition acutely blocked G1 cells from re-entering the cell cycle, this effect wore off within hours of drug administration. However, flow cytometric analysis of EdU uptake hours after palbociclib demonstrated aberrant S-phase with reduced rate of DNA synthesis. This POx-palbociclib-induced alteration of S-phase progression seems to remain true at later time points even when we observed that palbociclib G1/S inhibition began to decrease. Based on these data, we propose that the combinational therapy of POx-palbociclib and S-phase targeting agents will further improve treatment. Faulty tumor cell cycle progression in the presence of Pox-palbociclib may give increased window to target the S-phase for irreversible cell-cycle exit.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Longtao Wu ◽  
Clayton D. Crawley ◽  
Andrea Garofalo ◽  
Jackie W. Nichols ◽  
Paige-Ashley Campbell ◽  
...  

Abstract p50, the mature product of NFKB1, is constitutively produced from its precursor, p105. Here, we identify BARD1 as a p50-interacting factor. p50 directly associates with the BARD1 BRCT domains via a C-terminal phospho-serine motif. This interaction is induced by ATR and results in mono-ubiquitination of p50 by the BARD1/BRCA1 complex. During the cell cycle, p50 is mono-ubiquitinated in S phase and loss of this post-translational modification increases S phase progression and chromosomal breakage. Genome-wide studies reveal a substantial decrease in p50 chromatin enrichment in S phase and Cycln E is identified as a factor regulated by p50 during the G1 to S transition. Functionally, interaction with BARD1 promotes p50 protein stability and consistent with this, in human cancer specimens, low nuclear BARD1 protein strongly correlates with low nuclear p50. These data indicate that p50 mono-ubiquitination by BARD1/BRCA1 during the cell cycle regulates S phase progression to maintain genome integrity.


2011 ◽  
Vol 22 (17) ◽  
pp. 3094-3102 ◽  
Author(s):  
Jennifer K. Sims ◽  
Paul A. Wade

During chromosome duplication, it is essential to replicate not only the DNA sequence, but also the complex nucleoprotein structures of chromatin. Pericentric heterochromatin is critical for silencing repetitive elements and plays an essential structural role during mitosis. However, relatively little is understood about its assembly and maintenance during replication. The Mi2/NuRD chromatin remodeling complex tightly associates with actively replicating pericentric heterochromatin, suggesting a role in its assembly. Here we demonstrate that depletion of the catalytic ATPase subunit CHD4/Mi-2β in cells with a dampened DNA damage response results in a slow-growth phenotype characterized by delayed progression through S phase. Furthermore, we observe defects in pericentric heterochromatin maintenance and assembly. Our data suggest that chromatin assembly defects are sensed by an ATM-dependent intra–S phase chromatin quality checkpoint, resulting in a temporal block to the transition from early to late S phase. These findings implicate Mi-2β in the maintenance of chromatin structure and proper cell cycle progression.


2021 ◽  
Vol 85 (1) ◽  
pp. 92-96
Author(s):  
Tomoko Shiobara ◽  
Yoko Nagumo ◽  
Rie Nakajima ◽  
Tohru Fukuyama ◽  
Satoshi Yokoshima ◽  
...  

Abstract Mersicarpine is an aspidosperma alkaloid isolated from the Kopsia genus of plants. Its intriguing structural features have attracted much attention in synthetic organic chemistry, but no biological activity has been reported. Here, we report the effects of mersicarpine on human leukemia cell line HL60. At concentrations above 30 µm, mersicarpine reversibly arrested cell cycle progression in S-phase. At higher concentrations, it induced not only production of reactive oxygen species, but also apoptosis. Macromolecular synthesis assay revealed that mersicarpine specifically inhibits protein synthesis. These results suggest that mersicarpine is a novel translation inhibitor that induces apoptosis.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 828-828 ◽  
Author(s):  
Han Liu ◽  
David Chen ◽  
Todd Westergard ◽  
Shugaku Takeda ◽  
Satoru Sasagawa ◽  
...  

Abstract The MLL (mixed lineage leukemia) gene encodes a highly conserved 3,969 aa histone H3 K4 methyl transferase, of which chromosome translocations result in poor prognostic infant and therapy-related leukemias. Mysteriously, the pathognomonic MLL leukemia fusions consist of a common amino(N)-terminal ∼1400 aa of MLL fused in frame with more than 60 different partners with no shared characteristics. The most well known genetic function of MLL is to antagonize polycomb group of proteins for proper Hox gene expression. Consequently deregulated Hox genes caused by MLL translocations contribute to the MLL leukemogenesis. Besides Hox genes, it remains largely undetermined whether MLL participates in other biological processes. The 500kD MLL precursor undergoes evolutionarily conserved proteolytic maturation mediated by Taspase1 (Hsieh et al. 2003, MCB, 23, 186–194; Hsieh et al. 2003, Cell, 115, 293–303). Our recent studies on Taspase1 knockout cells established an MLL-E2F axis in orchestrating core cell cycle gene expression including Cyclins and possibly Cdk inhibitors (Takeda et al. 2006, Genes & Development, 20, 2397–2409). As MLL actively participates in the cell cycle regulation, we investigated the regulation of MLL through cell cycle transition. We uncovered a unique biphasic expression of MLL conferred by defined windows of degradation mediated by specialized cell cycle E3 ligases. Specifically, SCFSkp2 and APCCdc20 mark MLL for degradation at S phase and late M phase, respectively. Abolished peak expression of MLL incurs corresponding defects in G1/S transition and M phase progression. Conversely, over-expression of MLL blocks S phase progression. Remarkably, MLL degradation initiates at its N-terminal ∼1400 aa that is retained in all MLL leukemia fusions. We examined prevalent MLL-fusions, including MLL-AF4, MLL-AF9, MLL-ELL and MLL-ELL, and observed their increased resistance to degradation. Furthermore, the same resistance was observed with the leukemogenic MLL-lacZ but not the non-leukemogenic MLL-Myc tag fusion. Thus, non-oscillating expression of MLL-fusions through the cell cycle, resulted from impaired degradation, likely constitutes the universal mechanism underlying all MLL leukemias. Our data conclude an essential post-translational regulation of MLL by the cell cycle ubiquitin/proteasome system (UPS) to assure the temporal necessity of MLL in coordinating cell cycle progression. Future studies aim at providing a comprehensive analysis on the cell cycle consequences associated with MLL-fusions using genetically modified cells derived from mice carrying various MLL-fusion knockin alleles, including MLL-AF4, MLL-AF9, and MLL-CBP.


2009 ◽  
Vol 20 (15) ◽  
pp. 3572-3582 ◽  
Author(s):  
Gilad Yaakov ◽  
Alba Duch ◽  
María García-Rubio ◽  
Josep Clotet ◽  
Javier Jimenez ◽  
...  

Control of cell cycle progression by stress-activated protein kinases (SAPKs) is essential for cell adaptation to extracellular stimuli. Exposure of yeast to osmostress activates the Hog1 SAPK, which modulates cell cycle progression at G1 and G2 by the phosphorylation of elements of the cell cycle machinery, such as Sic1 and Hsl1, and by down-regulation of G1 and G2 cyclins. Here, we show that upon stress, Hog1 also modulates S phase progression. The control of S phase is independent of the S phase DNA damage checkpoint and of the previously characterized Hog1 cell cycle targets Sic1 and Hsl1. Hog1 uses at least two distinct mechanisms in its control over S phase progression. At early S phase, the SAPK prevents firing of replication origins by delaying the accumulation of the S phase cyclins Clb5 and Clb6. In addition, Hog1 prevents S phase progression when activated later in S phase or cells containing a genetic bypass for cyclin-dependent kinase activity. Hog1 interacts with components of the replication complex and delays phosphorylation of the Dpb2 subunit of the DNA polymerase. The two mechanisms of Hog1 action lead to delayed firing of origins and prolonged replication, respectively. The Hog1-dependent delay of replication could be important to allow Hog1 to induce gene expression before replication.


2006 ◽  
Vol 103 (40) ◽  
pp. 14808-14812 ◽  
Author(s):  
D. Barcaroli ◽  
L. Bongiorno-Borbone ◽  
A. Terrinoni ◽  
T. G. Hofmann ◽  
M. Rossi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document