scholarly journals Mi-2/NuRD complex function is required for normal S phase progression and assembly of pericentric heterochromatin

2011 ◽  
Vol 22 (17) ◽  
pp. 3094-3102 ◽  
Author(s):  
Jennifer K. Sims ◽  
Paul A. Wade

During chromosome duplication, it is essential to replicate not only the DNA sequence, but also the complex nucleoprotein structures of chromatin. Pericentric heterochromatin is critical for silencing repetitive elements and plays an essential structural role during mitosis. However, relatively little is understood about its assembly and maintenance during replication. The Mi2/NuRD chromatin remodeling complex tightly associates with actively replicating pericentric heterochromatin, suggesting a role in its assembly. Here we demonstrate that depletion of the catalytic ATPase subunit CHD4/Mi-2β in cells with a dampened DNA damage response results in a slow-growth phenotype characterized by delayed progression through S phase. Furthermore, we observe defects in pericentric heterochromatin maintenance and assembly. Our data suggest that chromatin assembly defects are sensed by an ATM-dependent intra–S phase chromatin quality checkpoint, resulting in a temporal block to the transition from early to late S phase. These findings implicate Mi-2β in the maintenance of chromatin structure and proper cell cycle progression.

2021 ◽  
Vol 22 (11) ◽  
pp. 5483
Author(s):  
Luisa F. Bustamante-Jaramillo ◽  
Celia Ramos ◽  
Cristina Martín-Castellanos

Cyclins and CDKs (Cyclin Dependent Kinases) are key players in the biology of eukaryotic cells, representing hubs for the orchestration of physiological conditions with cell cycle progression. Furthermore, as in the case of meiosis, cyclins and CDKs have acquired novel functions unrelated to this primal role in driving the division cycle. Meiosis is a specialized developmental program that ensures proper propagation of the genetic information to the next generation by the production of gametes with accurate chromosome content, and meiosis-specific cyclins are widespread in evolution. We have explored the diversification of CDK functions studying the meiosis-specific Crs1 cyclin in fission yeast. In addition to the reported role in DSB (Double Strand Break) formation, this cyclin is required for meiotic S-phase progression, a canonical role, and to maintain the architecture of the meiotic chromosomes. Crs1 localizes at the SPB (Spindle Pole Body) and is required to stabilize the cluster of telomeres at this location (bouquet configuration), as well as for normal SPB motion. In addition, Crs1 exhibits CDK(Cdc2)-dependent kinase activity in a biphasic manner during meiosis, in contrast to a single wave of protein expression, suggesting a post-translational control of its activity. Thus, Crs1 displays multiple functions, acting both in cell cycle progression and in several key meiosis-specific events.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Longtao Wu ◽  
Clayton D. Crawley ◽  
Andrea Garofalo ◽  
Jackie W. Nichols ◽  
Paige-Ashley Campbell ◽  
...  

Abstract p50, the mature product of NFKB1, is constitutively produced from its precursor, p105. Here, we identify BARD1 as a p50-interacting factor. p50 directly associates with the BARD1 BRCT domains via a C-terminal phospho-serine motif. This interaction is induced by ATR and results in mono-ubiquitination of p50 by the BARD1/BRCA1 complex. During the cell cycle, p50 is mono-ubiquitinated in S phase and loss of this post-translational modification increases S phase progression and chromosomal breakage. Genome-wide studies reveal a substantial decrease in p50 chromatin enrichment in S phase and Cycln E is identified as a factor regulated by p50 during the G1 to S transition. Functionally, interaction with BARD1 promotes p50 protein stability and consistent with this, in human cancer specimens, low nuclear BARD1 protein strongly correlates with low nuclear p50. These data indicate that p50 mono-ubiquitination by BARD1/BRCA1 during the cell cycle regulates S phase progression to maintain genome integrity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sara Cano-Crespo ◽  
Josep Chillarón ◽  
Alexandra Junza ◽  
Gonzalo Fernández-Miranda ◽  
Judit García ◽  
...  

Abstract CD98 heavy chain (CD98hc) forms heteromeric amino acid (AA) transporters by interacting with different light chains. Cancer cells overexpress CD98hc-transporters in order to meet their increased nutritional and antioxidant demands, since they provide branched-chain AA (BCAA) and aromatic AA (AAA) availability while protecting cells from oxidative stress. Here we show that BCAA and AAA shortage phenocopies the inhibition of mTORC1 signalling, protein synthesis and cell proliferation caused by CD98hc ablation. Furthermore, our data indicate that CD98hc sustains glucose uptake and glycolysis, and, as a consequence, the pentose phosphate pathway (PPP). Thus, loss of CD98hc triggers a dramatic reduction in the nucleotide pool, which leads to replicative stress in these cells, as evidenced by the enhanced DNA Damage Response (DDR), S-phase delay and diminished rate of mitosis, all recovered by nucleoside supplementation. In addition, proper BCAA and AAA availability sustains the expression of the enzyme ribonucleotide reductase. In this regard, BCAA and AAA shortage results in decreased content of deoxynucleotides that triggers replicative stress, also recovered by nucleoside supplementation. On the basis of our findings, we conclude that CD98hc plays a central role in AA and glucose cellular nutrition, redox homeostasis and nucleotide availability, all key for cell proliferation.


2021 ◽  
Vol 85 (1) ◽  
pp. 92-96
Author(s):  
Tomoko Shiobara ◽  
Yoko Nagumo ◽  
Rie Nakajima ◽  
Tohru Fukuyama ◽  
Satoshi Yokoshima ◽  
...  

Abstract Mersicarpine is an aspidosperma alkaloid isolated from the Kopsia genus of plants. Its intriguing structural features have attracted much attention in synthetic organic chemistry, but no biological activity has been reported. Here, we report the effects of mersicarpine on human leukemia cell line HL60. At concentrations above 30 µm, mersicarpine reversibly arrested cell cycle progression in S-phase. At higher concentrations, it induced not only production of reactive oxygen species, but also apoptosis. Macromolecular synthesis assay revealed that mersicarpine specifically inhibits protein synthesis. These results suggest that mersicarpine is a novel translation inhibitor that induces apoptosis.


2009 ◽  
Vol 20 (15) ◽  
pp. 3572-3582 ◽  
Author(s):  
Gilad Yaakov ◽  
Alba Duch ◽  
María García-Rubio ◽  
Josep Clotet ◽  
Javier Jimenez ◽  
...  

Control of cell cycle progression by stress-activated protein kinases (SAPKs) is essential for cell adaptation to extracellular stimuli. Exposure of yeast to osmostress activates the Hog1 SAPK, which modulates cell cycle progression at G1 and G2 by the phosphorylation of elements of the cell cycle machinery, such as Sic1 and Hsl1, and by down-regulation of G1 and G2 cyclins. Here, we show that upon stress, Hog1 also modulates S phase progression. The control of S phase is independent of the S phase DNA damage checkpoint and of the previously characterized Hog1 cell cycle targets Sic1 and Hsl1. Hog1 uses at least two distinct mechanisms in its control over S phase progression. At early S phase, the SAPK prevents firing of replication origins by delaying the accumulation of the S phase cyclins Clb5 and Clb6. In addition, Hog1 prevents S phase progression when activated later in S phase or cells containing a genetic bypass for cyclin-dependent kinase activity. Hog1 interacts with components of the replication complex and delays phosphorylation of the Dpb2 subunit of the DNA polymerase. The two mechanisms of Hog1 action lead to delayed firing of origins and prolonged replication, respectively. The Hog1-dependent delay of replication could be important to allow Hog1 to induce gene expression before replication.


2021 ◽  
Vol 8 ◽  
Author(s):  
Stephanie Batalis ◽  
LeAnn C. Rogers ◽  
Wayne O. Hemphill ◽  
Christopher H. Mauney ◽  
David A. Ornelles ◽  
...  

SAMHD1 activity is regulated by a network of mechanisms including phosphorylation, oxidation, oligomerization, and others. Significant questions remain about the effects of phosphorylation on SAMHD1 function and activity. We investigated the effects of a SAMHD1 T592E phosphorylation mimic on its cellular localization, catalytic activity, and cell cycle progression. We found that the SAMHD1 T592E is a catalytically active enzyme that is inhibited by protein oxidation. SAMHD1 T592E is retained in the nucleus at higher levels than the wild-type protein during growth factor-mediated signaling. This nuclear localization protects SAMHD1 from oxidation by cytoplasmic reactive oxygen species. The SAMHD1 T592E phosphomimetic further inhibits the cell cycle S/G2 transition. This has significant implications for SAMHD1 function in regulating innate immunity, antiviral response and DNA replication.


2012 ◽  
Vol 198 (5) ◽  
pp. 793-798 ◽  
Author(s):  
David G. Crider ◽  
Luis J. García-Rodríguez ◽  
Pallavi Srivastava ◽  
Leonardo Peraza-Reyes ◽  
Krishna Upadhyaya ◽  
...  

The Chk2-mediated deoxyribonucleic acid (DNA) damage checkpoint pathway is important for mitochondrial DNA (mtDNA) maintenance. We show in this paper that mtDNA itself affects cell cycle progression. Saccharomyces cerevisiae rho0 cells, which lack mtDNA, were defective in G1- to S-phase progression. Deletion of subunit Va of cytochrome c oxidase, inhibition of F1F0 adenosine triphosphatase, or replacement of all mtDNA-encoded genes with noncoding DNA did not affect G1- to S-phase progression. Thus, the cell cycle progression defect in rho0 cells is caused by loss of DNA within mitochondria and not loss of respiratory activity or mtDNA-encoded genes. Rad53p, the yeast Chk2 homologue, was required for inhibition of G1- to S-phase progression in rho0 cells. Pif1p, a DNA helicase and Rad53p target, underwent Rad53p-dependent phosphorylation in rho0 cells. Thus, loss of mtDNA activated an established checkpoint kinase that inhibited G1- to S-phase progression. These findings support the existence of a Rad53p-regulated checkpoint that regulates G1- to S-phase progression in response to loss of mtDNA.


2012 ◽  
Vol 209 (13) ◽  
pp. 2323-2330 ◽  
Author(s):  
Jana Pachlopnik Schmid ◽  
Roxane Lemoine ◽  
Nadine Nehme ◽  
Valéry Cormier-Daire ◽  
Patrick Revy ◽  
...  

DNA polymerase ε (Polε) is a large, four-subunit polymerase that is conserved throughout the eukaryotes. Its primary function is to synthesize DNA at the leading strand during replication. It is also involved in a wide variety of fundamental cellular processes, including cell cycle progression and DNA repair/recombination. Here, we report that a homozygous single base pair substitution in POLE1 (polymerase ε 1), encoding the catalytic subunit of Polε, caused facial dysmorphism, immunodeficiency, livedo, and short stature (“FILS syndrome”) in a large, consanguineous family. The mutation resulted in alternative splicing in the conserved region of intron 34, which strongly decreased protein expression of Polε1 and also to a lesser extent the Polε2 subunit. We observed impairment in proliferation and G1- to S-phase progression in patients’ T lymphocytes. Polε1 depletion also impaired G1- to S-phase progression in B lymphocytes, chondrocytes, and osteoblasts. Our results evidence the developmental impact of a Polε catalytic subunit deficiency in humans and its causal relationship with a newly recognized, inherited disorder.


2013 ◽  
Vol 41 (3) ◽  
pp. 777-782 ◽  
Author(s):  
Aoife O’Shaughnessy ◽  
Brian Hendrich

The CHD4 (chromodomain-helicase-DNA-binding 4) (or Mi-2β) protein is a founding component of the NuRD (nucleosome remodelling and deacetylation) complex. NuRD has long been known to function in transcriptional regulation, and is conserved throughout the animal and plant kingdoms. In recent years, evidence has steadily accumulated indicating that CHD4 can both function outside of the NuRD complex and also play important roles in cellular processes other than transcriptional regulation. A number of loss-of-function studies have identified important roles for CHD4 in the DNA-damage response and in cell cycle progression through S-phase and into G2. Furthermore, as part of NuRD, it participates in regulating acetylation levels of p53, thereby indirectly regulating the G1/S cell cycle checkpoint. Although CHD4 has a somewhat complicated relationship with the cell cycle, recent evidence indicates that CHD4 may exert some tumour-suppressor functions in human carcinogenesis. CHD4 is a defining member of the NuRD complex, but evidence is accumulating that CHD4 also plays important NuRD-independent roles in the DNA-damage response and cell cycle progression, as well as in transcriptional regulation.


2003 ◽  
Vol 23 (10) ◽  
pp. 3607-3622 ◽  
Author(s):  
Feng X. Li ◽  
Jing W. Zhu ◽  
Christopher J. Hogan ◽  
James DeGregori

ABSTRACT E2F plays critical roles in cell cycle progression by regulating the expression of genes involved in nucleotide synthesis, DNA replication, and cell cycle control. We show that the combined loss of E2F1 and E2F2 in mice leads to profound cell-autonomous defects in the hematopoietic development of multiple cell lineages. E2F2 mutant mice show erythroid maturation defects that are comparable with those observed in patients with megaloblastic anemia. Importantly, hematopoietic defects observed in E2F1/E2F2 double-knockout (DKO) mice appear to result from impeded S phase progression in hematopoietic progenitor cells. During DKO B-cell maturation, differentiation beyond the large pre-BII-cell stage is defective, presumably due to failed cell cycle exit, and the cells undergo apoptosis. However, apoptosis appears to be the consequence of failed maturation, not the cause. Despite the accumulation of hematopoietic progenitor cells in S phase, the combined loss of E2F1 and E2F2 results in significantly decreased expression and activities of several E2F target genes including cyclin A2. Our results indicate specific roles for E2F1 and E2F2 in the induction of E2F target genes, which contribute to efficient expansion and maturation of hematopoietic progenitor cells. Thus, E2F1 and E2F2 play essential and redundant roles in the proper coordination of cell cycle progression with differentiation which is necessary for efficient hematopoiesis.


Sign in / Sign up

Export Citation Format

Share Document