scholarly journals An Innate Immunity Signaling Process Suppresses Macrophage ABCA1 Expression through IRAK-1-Mediated Downregulation of Retinoic Acid Receptor α and NFATc2

2009 ◽  
Vol 29 (22) ◽  
pp. 5989-5997 ◽  
Author(s):  
Urmila Maitra ◽  
John S. Parks ◽  
Liwu Li

ABSTRACT ATP-binding cassette transporter A1 (ABCA1) plays a central role in promoting cholesterol efflux from macrophages, thereby reducing the risk of foam cell formation and atherosclerosis. The expression of ABCA1 is induced by members of the nuclear receptor family of transcription factors, including retinoic acid receptors (RARs). A key innate immunity signaling kinase, IRAK-1, has been associated with an increased risk of atherosclerosis in humans and mice. This prompted us to investigate the potential connection between IRAK-1 and the expression of ABCA1. Here, we demonstrate that nuclear RARα levels are dramatically elevated in IRAK-1−/− macrophages. Correspondingly, IRAK-1−/− macrophages exhibit increased expression of ABCA1 mRNA and protein, as well as elevated cholesterol efflux in response to the RAR ligand ATRA. Analysis of the ABCA1 proximal promoter revealed binding sites for both RAR and NFAT. Chromatin immunoprecipitation assays demonstrated increased binding of RARα and NFATc2 to the ABCA1 promoter in IRAK-1−/− macrophages compared to wild-type macrophages. Additionally, lipopolysaccharide pretreatment reduced the nuclear levels of RARα and decreased ABCA1 expression and cholesterol efflux in wild-type but not in IRAK-1−/− cells. In summary, this study reveals a novel connection between innate immunity signaling processes and the regulation of ABCA1 expression in macrophages and defines a potential therapeutic target for treating atherosclerosis.

2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Gantsetseg Tumurkhuu ◽  
Jargalsaikhan Dagvadorj ◽  
Timothy R Crother ◽  
Kenichi Shimada ◽  
Moshe Arditi ◽  
...  

Background & Objective: Foam cell formation (FCF) due to excessive accumulation of cholesterol by macrophages is a pathological hallmark of atherosclerosis. Chlamydia pneumoniae (Cp) promotes FCF in the presence of oxLDL, but the exact molecular mechanisms are still not completely delineated. Recent data indicates that the Nlrp3 inflammasome plays an important role in the formation of atherosclerotic plaques. Here we investigated the role of the Nlrp3 inflammasome during the acceleration of FCF by Cp infection. Methods and Results: In order to determine if the NLRP3 inflammasome played a role in Cp infection induced acceleration of FCF, we treated resident peritoneal macrophages exposed to oxLDL and Cp with the IL-1R antagonist, Anakinra, to block IL-1 signaling. Treatment with Anakinra resulted in a significant reduction in FCF. Nlrp3-/-, Casp1-/-, and WT macrophages were also treated with live Cp in the presence or absence of oxLDL. We found that Nlrp3-/- and Casp1-/- macrophages had significantly less FCF compared with WT cells. Interestingly, both ABCA1 (cholesterol efflux transporter) and its transcription factor, liver X receptor (LXR-α), were increased in Nlrp3-/- and Casp1-/- macrophages compared with WT cells. Addition of rIL-1β to Nlrp3-/- macrophages led to a decrease in ABCA1 expression and greater FCF. Importantly, Il1r-/- macrophages also had greater ABCA1 expression and reduced FCF when exposed to oxLDL and Cp infection. Conclusion: These data suggest that Cp infection facilitates foam cell formation in the presence of oxLDL by producing NLRP3 dependent IL-1 cytokines, which then feed back on the macrophages and interferes with cholesterol efflux by negatively regulating ABCA1. In the absence of IL-1 signaling, the expression of ABCA1 is upregulated leading to greater cholesterol efflux and reduced FCF. Thus we have identified a novel regulatory loop controlling FCF. Understanding these interacting pathways will lead to new therapeutic strategies against atherosclerosis.


2015 ◽  
Vol 114 (4) ◽  
pp. 509-518 ◽  
Author(s):  
Wenjing Zhou ◽  
Jiacheng Lin ◽  
Hongen Chen ◽  
Jingjing Wang ◽  
Yan Liu ◽  
...  

It has been suggested that retinoic acid (RA) has a potential role in the prevention of atherosclerotic CVD. In the present study, we used J774A.1 cell lines and primary peritoneal macrophages to investigate the protective effects of RA on foam cell formation and atherogenesis in apoE-deficient (apoE− / −) mice. A total of twenty male apoE− / − mice (n 10 animals per group), aged 8 weeks, were fed on a high-fat diet (HFD) and treated with vehicle or 9-cis-RA for 8 weeks. The atherosclerotic plaque area in the aortic sinus of mice in the 9-cis-RA group was 40·7 % less than that of mice in the control group (P< 0·01). Mouse peritoneal macrophages from the 9-cis-RA group had higher protein expression levels of ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1) than those from the control group. Serum total and LDL-cholesterol concentrations were lower in the 9-cis-RA group than in the control group (P< 0·05). In vitro studies showed that incubation of cholesterol-loaded J774A.1 macrophages with 9-cis-RA (0·1, 1 and 10 μmol/l) induced cholesterol efflux in a dose-dependent manner. The 9-cis-RA treatment markedly attenuated lipid accumulation in macrophages exposed to oxidised LDL. Moreover, treatment with 9-cis-RA significantly increased the protein expression levels of ABCA1 and ABCG1 in J774A.1 macrophages in a dose-dependent manner. Furthermore, 9-cis-RA dose-dependently enhanced the protein expression level of liver X receptor-α (LXRα), the upstream regulator of ABCA1 and ABCG1. Taken together, the present results show that 9-cis-RA suppresses foam cell formation and prevents HFD-induced atherogenesis via the LXRα-dependent up-regulation of ABCA1 and ABCG1.


2005 ◽  
Vol 280 (23) ◽  
pp. 22212-22221 ◽  
Author(s):  
Carmen A. Argmann ◽  
Jane Y. Edwards ◽  
Cynthia G. Sawyez ◽  
Caroline H. O'Neil ◽  
Robert A. Hegele ◽  
...  

The cholesterol biosynthetic pathway produces numerous signaling molecules. Oxysterols through liver X receptor (LXR) activation regulate cholesterol efflux, whereas the non-sterol mevalonate metabolite, geranylgeranyl pyrophosphate (GGPP), was recently demonstrated to inhibit ABCA1 expression directly, through antagonism of LXR and indirectly through enhanced RhoA geranylgeranylation. We used HMG-CoA reductase inhibitors (statins) to test the hypothesis that reduced synthesis of mevalonate metabolites would enhance cholesterol efflux and attenuate foam cell formation. Preincubation of THP-1 macrophages with atorvastatin, dose dependently (1–10 μm) stimulated cholesterol efflux to apolipoprotein AI (apoAI, 10–60%, p < 0.05) and high density lipoprotein (HDL3) (2–50%, p < 0.05), despite a significant decrease in cholesterol synthesis (2–90%). Atorvastatin also increased ABCA1 and ABCG1 mRNA abundance (30 and 35%, p < 0.05). Addition of mevalonate, GGPP or farnesyl pyrophosphate completely blocked the statin-induced increase in ABCA1 expression and apoAI-mediated cholesterol efflux. A role for RhoA was established, because two inhibitors of Rho protein activity, a geranylgeranyl transferase inhibitor and C3 exoenzyme, increased cholesterol efflux to apoAI (20–35%, p < 0.05), and macrophage expression of dominant-negative RhoA enhanced cholesterol efflux to apoAI (20%, p < 0.05). In addition, atorvastatin increased the RhoA levels in the cytosol fraction and decreased the membrane localization of RhoA. Atorvastatin treatment activated peroxisome proliferator activated receptor γ and increased LXR-mediated gene expression suggesting that atorvastatin induces cholesterol efflux through a molecular cascade involving inhibition of RhoA signaling, leading to increased peroxisome proliferator activated receptor γ activity, enhanced LXR activation, increased ABCA1 expression, and cholesterol efflux. Finally, statin treatment inhibited cholesteryl ester accumulation in macrophages challenged with atherogenic hypertriglyceridemic very low density lipoproteins indicating that statins can regulate foam cell formation.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Marit Westerterp ◽  
Panagiotis Fotakis ◽  
Mireille Ouimet ◽  
Andrea E Bochem ◽  
Hanrui Zhang ◽  
...  

Plasma high-density-lipoprotein (HDL) has several anti-atherogenic properties, including its key role in functioning as acceptor for ATP-binding cassette A1 and G1 (ABCA1 and ABCG1) mediated cholesterol efflux. We have shown previously that macrophage Abca1/g1 deficiency accelerates atherosclerosis, by enhancing foam cell formation and inflammatory cytokine expression in atherosclerotic plaques. Macrophage cholesterol accumulation activates the inflammasome, leading to caspase-1 cleavage, required for IL-1β and IL-18 secretion. Several studies have suggested that inflammasome activation accelerates atherogenesis. We hypothesized that macrophage Abca1/g1 deficiency activates the inflammasome. In Ldlr -/- mice fed a Western type diet (WTD), macrophage Abca1/g1 deficiency increased IL-1β and IL-18 plasma levels (2-fold; P <0.001), and induced caspase-1 cleavage. Deficiency of the inflammasome components Nlrp3 or caspase-1 in macrophage Abca1/g1 knockouts reversed the increase in plasma IL-18 levels ( P <0.001), indicating these changes were inflammasome dependent. We found that macrophage Abca1/g1 deficiency induced caspase-1 cleavage in splenic CD115 + monocytes and CD11b + macrophages. While mitochondrial ROS production or lysosomal function were not affected, macrophage Abca1/g1 deficiency led to an increased splenic population of monocytes (2.5-fold; P <0.01). Monocytes secrete ATP, and as a result, ATP secretion from total splenic cells was increased (2.5-fold; P <0.01), likely contributing to inflammasome activation. Caspase-1 deficiency decreased atherosclerosis in macrophage Abca1/g1 deficient Ldlr -/- mice fed WTD for 8 weeks (225822 vs 138606 μm 2 ; P <0.05). Of therapeutic interest, one injection of reconstituted HDL (100 mg/kg) in macrophage Abca1/g1 knockouts decreased plasma IL-18 levels ( P <0.05). Tangier disease patients, with a homozygous loss-of-function for ABCA1, showed increased IL-1β and IL-18 plasma levels (3-fold; P <0.001), suggesting that cholesterol efflux pathways also suppress inflammasome activation in humans. These findings suggest that macrophage cholesterol efflux pathways suppress inflammasome activation, possibly contributing to the anti-atherogenic effects of HDL treatment.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Toshihiro Imamura ◽  
Iain S Hartley ◽  
Abdull J Massri ◽  
Orit Poulsen ◽  
Dan Zhou ◽  
...  

Background: Obstructive sleep apnea syndrome (OSAS) is a common sleeping disorder characterized by intermittent hypoxia (IH). Clinical studies have previously shown an independent association between obstructive sleep apnea and atherosclerosis. Furthermore, it has been previously shown that such a predisposition to atherosclerosis in OSAS patient can be caused by various inflammatory mediators, particularly the NF-kappa B (NF-kB) pathway. Foam cells or lipid-laden macrophages in the atherosclerotic lesion have been well documented as a hallmark of atherosclerosis; however, the contribution of IH, such as in OSAS, to foam cell formation is not yet fully understood. Previous observations have led us to hypothesized that IH induces macrophage foam cell formation due to the activation of NF-kappa B pathway. Methods: Myeloid restricted IKK-beta deleted mice were generated by a Cre/lox recombination system to inactivate the NF-kB pathway in macrophages. Thioglycollate-elicited peritoneal macrophages were incubated with 200 μg/ml of low-density lipoprotein and simultaneously exposed to either IH (Normoxia: 8min, 0.5% O2: 10min) or normoxia for 24 hours. After exposure, the extent of foam cell formation was assessed by quantification of intracellular cholesterol. Finally, we compared the differences in gene expression using RNA-seq between wild type and IKK-beta deleted macrophages exposed to either IH or normoxia for 24 hours. Results: IH significantly increased total cholesterol in wild type macrophages (63.4±3.3 μg/mg of cellular protein, n=9) in comparison to normoxia (51.2±1.6). Interestingly, such increase in intracellular cholesterol in response to IH-exposure was abolished by IKK-beta deletion (IH 52.4±1.1; normoxia 50.0±1.6 n=8), suggesting that NF-kB pathway regulated gene expression is critical for IH-induced foam cell formation. Indeed, we have found that NF-kB knockout abolished IH-induced expressional alterations in 364 genes, which are potential candidates for regulating intracellular cholesterol. Conclusion: NF-kB activation plays a critical role in IH-induced macrophage foam cell formation.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Catherine A Reardon ◽  
Amulya Lingaraju ◽  
Kelly Q Schoenfelt ◽  
Guolin Zhou ◽  
Ning-Chun Liu ◽  
...  

Type 2 diabetics have a higher risk for atherosclerosis, but the mechanisms underlying the increased risk are poorly understood. Macrophages, which are activated in type 2 diabetes (T2D) and have a role in all stages of atherogenesis, are an attractive link. Our hypothesis is that T2D promotes macrophage dysfunction to promote atherosclerosis. To investigate the relationship between T2D and macrophage dysfunction, we used a proteomics approach to identify dysregulated proteins secreted from peritoneal macrophages in a diet induced mouse model of obesity and insulin resistance in the absence of hypercholesterolemia. Twenty-seven T2D responsive proteins were identified that predict defects in many of the critical functions of macrophages in atherosclerosis (e.g. decreased apoE- cholesterol efflux; decreased MFGE8 – efferocytosis, increased MMP12- matrix degradation). The macrophages from lean and obese mice were not lipid loaded, but the obese macrophages accumulated significantly more cholesterol when exposed to high levels of atherogenic lipoproteins in vitro suggesting that dysregulation of the T2D responsive proteins in diabetic mice render macrophages more susceptible to cholesterol loading. Importantly, many of these same protein changes, which were present in atherosclerotic Ldlr-/- mice with T2D, were normalized when these mice were fed non-diabetogenic hypercholesterolemic diets. Thus, foam cell formation in the presence and absence of T2D produces distinct effects on macrophage protein levels, and hence function. Further, we identify IFNγ as a mediator of the T2D responsive protein dysfunction. IFNγ, but not other cytokines, insulin or glucose, promote the T2D responsive protein dysregulation and increased susceptibility to cholesterol accumulation in vitro and the dysregulation is not observed in macrophage foam cells obtained from obese, diabetic IFNγ receptor 1 knockout animals. We also demonstrate that IFNγ can target these proteins in arterial wall macrophages in vivo . These studies suggest that IFNγ is an important mediator of macrophage dysfunction in T2D that may contribute to the enhanced cardiovascular risk in these patients.


2016 ◽  
Vol 7 (7) ◽  
pp. 3201-3210 ◽  
Author(s):  
Shengjuan Zhao ◽  
Jianke Li ◽  
Lifang Wang ◽  
Xiaoxia Wu

Pomegranate peel polyphenols hindered ox-LDL-induced raw264.7 foam cell formation, by decreasing CD36 and promoting ABCA1 and LXRα expression.


Sign in / Sign up

Export Citation Format

Share Document