scholarly journals Promoter Region-Specific Histone Incorporation by the Novel Histone Chaperone ANP32B and DNA-Binding Factor KLF5

2007 ◽  
Vol 28 (3) ◽  
pp. 1171-1181 ◽  
Author(s):  
Yoshiko Munemasa ◽  
Toru Suzuki ◽  
Kenichi Aizawa ◽  
Saku Miyamoto ◽  
Yasushi Imai ◽  
...  

ABSTRACT Regulation of chromatin in eukaryotic transcription requires histone-modifying enzymes, nucleosome remodeling complexes, and histone chaperones. Specific regulation of histone incorporation/eviction by histone chaperones on the promoter (e.g., region specific) is still poorly understood. In the present study, we show that direct and functional interaction of histone chaperone and DNA-binding transcription factor leads to promoter region-specific histone incorporation and inhibition of histone acetylation. We report here that the DNA-binding transcription factor Krüppel-like factor 5 (KLF5) interacts with the novel histone chaperone acidic nuclear phosphoprotein 32B (ANP32B), leading to transcriptional repression of a KLF5-downstream gene. We further show that recruitment of ANP32B onto the promoter region requires KLF5 and results in promoter region-specific histone incorporation and inhibition of histone acetylation by ANP32B. Extracellular stimulus (e.g., phorbol ester) regulates this mechanism in the cell. Collectively, we have identified a novel histone chaperone, ANP32B, and through analysis of the actions of this factor show a new mechanism of promoter region-specific transcriptional regulation at the chromatin level as mediated by the functional interaction between histone chaperone and DNA-binding transcription factor.

2003 ◽  
Vol 278 (31) ◽  
pp. 28758-28764 ◽  
Author(s):  
Toru Suzuki ◽  
Shinsuke Muto ◽  
Saku Miyamoto ◽  
Kenichi Aizawa ◽  
Masami Horikoshi ◽  
...  

2022 ◽  
Author(s):  
Pedro Buzon ◽  
Alejandro Velazquez-Cruz ◽  
Katiuska Gonzalez-Arzola ◽  
Antonio Diaz-Quintana ◽  
Irene Diaz-Moreno ◽  
...  

Chromatin homeostasis mediates some of the most fundamental processes in the eukaryotic cell. In this regard, histone chaperones have emerged as major regulatory factors during DNA replication, repair, and transcription. However, the dynamic nature of these processes has severely impeded their characterization at the molecular level. Here we apply single-molecule probing by fluorescence optical tweezers to follow histone chaperone dynamics in real-time. The molecular action of SET/template-activating factor-Iβ and nucleophosmin 1, representing the two most common histone chaperone folds, were examined using both nucleosomes and isolated core histones. We show that these chaperones present binding specificity for partially dismantled nucleosomes and are able to recognize and disrupt non-native histone-DNA interactions. Furthermore, we reveal that cytochrome c inhibition of histone chaperones is coupled to chaperone accumulation on DNA-bound histones. Our single-molecule approach shows that despite the drastically different structures of these chaperones, they present conserved modes of action mediating nucleosome remodeling.


2022 ◽  
Author(s):  
Chelsea L Blankenchip ◽  
Justin V Nguyen ◽  
Rebecca K Lau ◽  
Qiaozhen Ye ◽  
Yajie Gu ◽  
...  

Bacteria use diverse immune systems to defend themselves from ubiquitous viruses termed bacteriophages (phages). Many anti-phage systems function by abortive infection to kill a phage-infected cell, raising the question of how these systems are regulated to avoid activation and cell killing outside the context of infection. Here, we identify a transcription factor associated with the widespread CBASS bacterial immune system, that we term CapW. CapW forms a homodimer and binds a palindromic DNA sequence in the CBASS promoter region. Two crystal structures of CapW reveal how the protein switches from a DNA binding-competent state to a ligand-bound state that cannot bind DNA due to misalignment of dimer-related DNA binding domains. We show that CapW strongly represses CBASS gene expression in uninfected cells, and that CapW disruption likely results in toxicity due to uncontrolled CBASS expression. Our results parallel recent findings with BrxR, a transcription factor associated with the BREX anti-phage system, and suggest that CapW and BrxR are the founding members of a family of universal anti-phage signaling proteins.


1999 ◽  
Vol 19 (7) ◽  
pp. 4918-4926 ◽  
Author(s):  
Jinqi Liu ◽  
Anna Barnett ◽  
Ellis J. Neufeld ◽  
Jaquelin P. Dudley

ABSTRACT Homeoproteins are known to participate in development and cell type specification. The homeoproteins CCAAT displacement protein (CDP) and special AT-rich sequence binding protein 1 (SATB1) have been shown to bind to nuclear matrix-associated regions and to act as repressors of many cellular genes. Moreover, binding of SATB1 to the mouse mammary tumor virus (MMTV) promoter region dramatically affects the tissue-specific transcription of this retrovirus. Because protein-protein interactions are a common means of regulating homeoprotein function, we tested whether SATB1 and CDP interact in vivo and in vitro. SATB1 interacted with CDP through its DNA-binding domain, as demonstrated by glutathione S-transferase (GST) pull-down assays. GST pull-down assays also showed that CDP associated with SATB1 through three of its four DNA-binding domains (CR1, CR2, and the homeodomain). SATB1-specific antisera, but not preimmune sera, precipitated CDP from nuclear extracts, and CDP-specific antisera precipitated SATB1 from the same extracts. Far-Western blotting detected interaction of SATB1 and CDP in several different tissue extracts. Association of purified SATB1 and CDP in vitro resulted in the inability of each protein to bind to DNA in gel retardation assays. CDP overexpression in cultured T cells led to a loss of detectable SATB1 binding to the MMTV promoter region, as measured by gel shift experiments. CDP overexpression also elevated MMTV long terminal repeat reporter gene activity in transient-transfection assays, a result consistent with neutralization of the SATB1 repressor function in T cells. SATB1 is very abundant in certain tissues, particularly thymus, whereas CDP is relatively ubiquitous, except in certain terminally differentiated cell types. Because of the tissue and cell type distribution of SATB1 and CDP, we propose that the SATB1-to-CDP ratio in different tissues is a novel mechanism for homeoproteins to control gene expression and differentiation in mammals.


2010 ◽  
Vol 30 (20) ◽  
pp. 4952-4964 ◽  
Author(s):  
Miharu Hisaoka ◽  
Shuhei Ueshima ◽  
Kensaku Murano ◽  
Kyosuke Nagata ◽  
Mitsuru Okuwaki

ABSTRACT Histone chaperones regulate the density of incorporated histone proteins around DNA transcription sites and therefore constitute an important site-specific regulatory mechanism for the control of gene expression. At present, the targeting mechanism conferring this site specificity is unknown. We previously reported that the histone chaperone B23/nucleophosmin associates with rRNA chromatin (r-chromatin) to stimulate rRNA transcription. Here, we report on the mechanism for site-specific targeting of B23 to the r-chromatin. We observed that, during mitosis, B23 was released from chromatin upon inactivation of its RNA binding activity by cdc2 kinase-mediated phosphorylation. The phosphorylation status of B23 was also shown to strongly affect its chromatin binding activity. We further found that r-chromatin binding of B23 was a necessary condition for B23 histone chaperone activity in vivo. In addition, we found that depletion of upstream binding factor (UBF; an rRNA transcription factor) decreased the chromatin binding affinity of B23, which in turn led to an increase in histone density at the r-chromatin. These two major strands of evidence suggest a novel cell cycle-dependent mechanism for the site-specific regulation of histone density via joint RNA- and transcription factor-mediated recruitment of histone chaperones to specific chromosome loci.


2017 ◽  
Vol 474 (14) ◽  
pp. 2365-2378 ◽  
Author(s):  
Yong-Sung Park ◽  
Tae-Hyoung Kim ◽  
Cheol-Won Yun

Although copper functions as a cofactor in many physiological processes, copper overload leads to harmful effects in living cells. Thus, copper homeostasis is tightly regulated. However, detailed copper metabolic pathways have not yet been identified in filamentous fungi. In this report, we investigated the copper transcription factor AfMac1 (Aspergillus fumigatusMac1 homolog) and identified its regulatory mechanism in A. fumigatus. AfMac1 has domains homologous to the DNA-binding and copper-binding domains of Mac1 from Saccharomyces cerevisiae, and AfMac1 efficiently complemented Mac1 in S. cerevisiae. Expression of Afmac1 resulted in CTR1 up-regulation, and mutation of the DNA-binding domain of Afmac1 failed to activate CTR1 expression in S. cerevisiae. The Afmac1 deletion strain of A. fumigatus failed to grow in copper-limited media, and its growth was restored by introducing ctrC. We found that AfMac1 specifically bound to the promoter region of ctrC based on EMSA. The AfMac1-binding motif 5′-TGTGCTCA-3′ was identified from the promoter region of ctrC, and the addition of mutant ctrC lacking the AfMac1-binding motif failed to up-regulate ctrC in A. fumigatus. Furthermore, deletion of Afmac1 significantly reduced strain virulence and activated conidial killing activity by neutrophils and macrophages. Taken together, these results suggest that AfMac1 is a copper transcription factor that regulates cellular copper homeostasis in A. fumigatus.


2019 ◽  
Vol 47 (14) ◽  
pp. 7380-7391 ◽  
Author(s):  
Joy M Cote ◽  
Yin-Ming Kuo ◽  
Ryan A Henry ◽  
Hataichanok Scherman ◽  
Daniel D Krzizike ◽  
...  

Abstract The ability of histone chaperone Anti-silencing factor 1 (Asf1) to direct acetylation of lysine 56 of histone H3 (H3K56ac) represents an important regulatory step in genome replication and DNA repair. In Saccharomyces cerevisiae, Asf1 interacts functionally with a second chaperone, Vps75, and the lysine acetyltransferase (KAT) Rtt109. Both Asf1 and Vps75 can increase the specificity of histone acetylation by Rtt109, but neither alter selectivity. However, changes in acetylation selectivity have been observed in histones extracted from cells, which contain a plethora of post-translational modifications. In the present study, we use a series of singly acetylated histones to test the hypothesis that histone pre-acetylation and histone chaperones function together to drive preferential acetylation of H3K56. We show that pre-acetylated H3K14ac/H4 functions with Asf1 to drive specific acetylation of H3K56 by Rtt109–Vps75. Additionally, we identified an exosite containing an acidic patch in Asf1 and show that mutations to this region alter Asf1-mediated crosstalk that changes Rtt109–Vps75 selectivity. Our proposed mechanism suggests that Gcn5 acetylates H3K14, recruiting remodeler complexes, allowing for the Asf1-H3K14ac/H4 complex to be acetylated at H3K56 by Rtt109–Vps75. This mechanism explains the conflicting biochemical data and the genetic links between Rtt109, Vps75, Gcn5 and Asf1 in the acetylation of H3K56.


Sign in / Sign up

Export Citation Format

Share Document