scholarly journals Specific Role of Chk1 Phosphorylations in Cell Survival and Checkpoint Activation

2007 ◽  
Vol 27 (7) ◽  
pp. 2572-2581 ◽  
Author(s):  
Hiroyuki Niida ◽  
Yuko Katsuno ◽  
Birendranath Banerjee ◽  
M. Prakash Hande ◽  
Makoto Nakanishi

ABSTRACT Chk1 is a multifunctional protein kinase that plays essential roles in cell survival and cell cycle checkpoints. Chk1 is phosphorylated at multiple sites by several protein kinases, but the precise effects of these phosphorylations are largely unknown. Using a knockout-knockin system, we examined the abilities of Chk1 mutants to reverse the defects of Chk1-null cells. Wild-type Chk1 could rescue all the defects of Chk1-null cells. Like endogenous Chk1, wild-type Chk1 localized in both the cytoplasm and the nucleus, and its centrosomal association was enhanced by DNA damage. The mutation at S345 resulted in mitotic catastrophe, impaired checkpoints, and loss of the ability to localize in the cytoplasm, but the mutant retained the ability to be released from chromatin upon encountering genotoxic stressors. In contrast, the mutation at S317 resulted in impaired checkpoints and loss of chromatin release upon encountering genotoxic stressors, but its mutant retained the abilities to prevent mitotic catastrophes and to localize in the cytoplasm, suggesting the distinct effects of these phosphorylations. The forced immobilization of S317A/S345A in centrosomes resulted in the prevention of apoptosis in the presence or absence of DNA damage. Thus, two-step phosphorylation of Chk1 at S317 and S345 appeared to be required for proper localization of Chk1 to centrosomes.

2020 ◽  
Author(s):  
Mª José López-Grueso ◽  
Carmen Alicia Padilla ◽  
José Antonio Bárcena ◽  
Raquel Requejo-Aguilar

Abstract DJ-1 is a multifunctional protein involved in Parkinson disease (PD) that can act as antioxidant, molecular chaperone, protease, glyoxalase and transcriptional regulator. However, the exact mechanism by which DJ-1 dysfunction contributes to development of Parkinson´s disease remains elusive. Here, using a comparative proteomic analysis between normal cortical neurons and neurons lacking DJ-1, we show that this protein is involved in cell cycle checkpoints disruption as a consequence of increased amount of p-Tau and a-synuclein proteins, altered signalling pathways, as the phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK), and deregulation of cyclin-dependent kinase 5 (Cdk5). Cdk5 is normally involved in dendritic growth, axon formation and the establishment of synapses, but can also contribute to cell cycle progression, as in our case, in pathological conditions. In addition, we observed a decrease in proteasomal activity, probably due to Tau phosphorylation that can also lead to activation of mitogenic signalling pathways. Taken together, our findings indicate, for the first time, that aborted cell cycle re-entry could be at the onset of DJ-1 associated PD. Thereby, new approaches targeting cell cycle re-entry can be envisaged to improve current therapeutic strategies.


2002 ◽  
Vol 22 (22) ◽  
pp. 7831-7841 ◽  
Author(s):  
Eugene S. Kandel ◽  
Jennifer Skeen ◽  
Nathan Majewski ◽  
Antonio Di Cristofano ◽  
Pier Paolo Pandolfi ◽  
...  

ABSTRACT Activation of Akt, or protein kinase B, is frequently observed in human cancers. Here we report that Akt activation via overexpression of a constitutively active form or via the loss of PTEN can overcome a G2/M cell cycle checkpoint that is induced by DNA damage. Activated Akt also alleviates the reduction in CDC2 activity and mitotic index upon exposure to DNA damage. In addition, we found that PTEN null embryonic stem (ES) cells transit faster from the G2/M to the G1 phase of the cell cycle when compared to wild-type ES cells and that inhibition of phosphoinositol-3-kinase (PI3K) in HEK293 cells elicits G2 arrest that is alleviated by activated Akt. Furthermore, the transition from the G2/M to the G1 phase of the cell cycle in Akt1 null mouse embryo fibroblasts (MEFs) is attenuated when compared to that of wild-type MEFs. These results indicate that the PI3K/PTEN/Akt pathway plays a role in the regulation of G2/M transition. Thus, cells expressing activated Akt continue to divide, without being eliminated by apoptosis, in the presence of continuous exposure to mutagen and accumulate mutations, as measured by inactivation of an exogenously expressed herpes simplex virus thymidine kinase (HSV-tk) gene. This phenotype is independent of p53 status and cannot be reproduced by overexpression of Bcl-2 or Myc and Bcl-2 but seems to counteract a cell cycle checkpoint mediated by DNA mismatch repair (MMR). Accordingly, restoration of the G2/M cell cycle checkpoint and apoptosis in MMR-deficient cells, through reintroduction of the missing component of MMR, is alleviated by activated Akt. We suggest that this new activity of Akt in conjunction with its antiapoptotic activity may contribute to genetic instability and could explain its frequent activation in human cancers.


2006 ◽  
Vol 20 (5) ◽  
pp. 1112-1120 ◽  
Author(s):  
Jessica H. Dworet ◽  
Judy L. Meinkoth

Abstract We previously reported that protein kinase A activity is an important determinant of thyroid cell survival. Given the important role of cAMP response element binding protein (CREB) in mediating the transcriptional effects of protein kinase A, we explored whether interference with CREB family members impaired thyroid cell survival. Expression of A-CREB, a dominant-negative CREB mutant that inhibits CREB DNA binding activity, induced apoptosis in rat thyroid cells. A-CREB inhibited CRE-regulated gene expression but failed to alter the expression of bcl-2 family members or of well-characterized inhibitors of apoptosis. To elucidate the mechanism through which impaired CREB function triggered apoptosis, its effects on cell proliferation were examined. Expression of A-CREB inhibited cell number increases, in part due to delayed cell cycle transit. Protracted S-phase progression in A-CREB-expressing cells was sufficient to activate a checkpoint response characterized by Chk-1, histone H2A.X, and p53 phosphorylation. To determine whether cell cycle progression was required for apoptosis, the effects of p27 overexpression were investigated. Overexpression of p27 prevented cell cycle progression, checkpoint activation, and apoptosis in A-CREB-expressing cells. These data reveal a novel mechanism through which interference with CREB abrogates cell survival, through checkpoint activation secondary to cell cycle delay. This study may explain how interference with CREB induces apoptosis in cells where alterations in the expression of pro- and anti-survival genes are not detected.


2009 ◽  
Vol 29 (16) ◽  
pp. 4341-4351 ◽  
Author(s):  
Vanesa Lafarga ◽  
Ana Cuadrado ◽  
Isabel Lopez de Silanes ◽  
Rocio Bengoechea ◽  
Oscar Fernandez-Capetillo ◽  
...  

ABSTRACT Activation of p38 mitogen-activated protein kinase (MAPK) plays an important role in the G2/M cell cycle arrest induced by DNA damage, but little is known about the role of this signaling pathway in the G1/S transition. Upregulation of the cyclin-dependent kinase inhibitor p21Cip1 is thought to make a major contribution to the G1/S cell cycle arrest induced by γ radiation. We show here that inhibition of p38 MAPK impairs p21Cip1 accumulation and, as a result, the ability of cells to arrest in G1 in response to γ radiation. We found that p38 MAPK induces p21Cip1 mRNA stabilization, without affecting its transcription or the stability of the protein. In particular, p38 MAPK phosphorylates the mRNA binding protein HuR on Thr118, which results in cytoplasmic accumulation of HuR and its enhanced binding to the p21Cip1 mRNA. Our findings help to understand the emerging role of p38 MAPK in the cellular responses to DNA damage and reveal the existence of p53-independent networks that cooperate in modulating p21Cip1 levels at the G1/S checkpoint.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Razmik Mirzayans ◽  
Bonnie Andrais ◽  
April Scott ◽  
David Murray

Activation of the p53 signaling pathway by DNA-damaging agents was originally proposed to result either in cell cycle checkpoint activation to promote survival or in apoptotic cell death. This model provided the impetus for numerous studies focusing on the development of p53-based cancer therapies. According to recent evidence, however, most p53 wild-type human cell types respond to ionizing radiation by undergoing stress-induced premature senescence (SIPS) and not apoptosis. SIPS is a sustained growth-arrested state in which cells remain viable and secrete factors that may promote cancer growth and progression. Thep21WAF1(hereafter p21) protein has emerged as a key player in the p53 pathway. In addition to its well-studied role in cell cycle checkpoints, p21 regulates p53 and its upstream kinase (ATM), controls gene expression, suppresses apoptosis, and induces SIPS. Herein, we review these and related findings with human solid tumor-derived cell lines, report new data demonstrating dynamic behaviors of p53 and p21 in the DNA damage response, and examine the gain-of-function properties of cancer-associated p53 mutations. We point out obstacles in cancer-therapeutic strategies that are aimed at reactivating the wild-type p53 function and highlight some alternative approaches that target the apoptotic threshold in cancer cells with differing p53 status.


2011 ◽  
Vol 18 (5) ◽  
pp. 555-564 ◽  
Author(s):  
Antje Klagge ◽  
Carl Weidinger ◽  
Kerstin Krause ◽  
Beate Jessnitzer ◽  
Monika Gutknecht ◽  
...  

Members of the forkhead box-O (FOXO) transcription factors family play an important role in stress defence. FOXO3 deregulation has recently been identified as a hallmark of thyroid carcinogenesis. In this study, we explore the role of FOXO3 in defence of oxidative stress in normal thyrocytes. Stable rat thyroid cell lines were generated expressing either the human wild-type FOXO3, a constitutively activating FOXO3 mutant, or the empty control vector. Cell clones were characterised for proliferation, function and morphology. Hydrogen peroxide and UV irradiation were used to induce oxidative stress. Changes in FOXO3 activity, induction of cell cycle arrest or apoptosis and kinetics of DNA damage repair were analysed. Upregulation of FOXO3 in thyrocytes resulted in decreased proliferation and changes in morphology, but did not affect differentiation. Hydrogen peroxide stimulated the expression of the FOXO3 target genes growth arrest and DNA damage-inducible protein 45 α (Gadd45α) and Bcl-2 interacting mediator of cell death (BIM) and induced programmed cell death in cells with overexpression of the human wild-type FOXO3. In contrast, UV irradiation resulted in a distinct cellular response with activation of FOXO3-c-Jun-N-terminal kinase-Gadd45α signalling and induction of cell cycle arrest at the G2-M-checkpoint. This was accompanied by FOXO3-induced DNA damage repair as evidenced by lower DNA breaks over time in a comet assay in FOXO3 cell clones compared with control cells. In conclusion, FOXO3 is a pivotal relay in the coordination of the cellular response to genotoxic stress in the thyroid. Depending on the stimulus, FOXO3 induces either cell cycle arrest or apoptosis. Conversely, FOXO3 inactivation in thyroid cancers is consistent with genomic instability and loss of cell cycle control.


2002 ◽  
Vol 277 (50) ◽  
pp. 47976-47979 ◽  
Author(s):  
Gerburg M. Wulf ◽  
Yih-Cherng Liou ◽  
Akihide Ryo ◽  
Sam W. Lee ◽  
Kun Ping Lu

2009 ◽  
Vol 29 (10) ◽  
pp. 2828-2840 ◽  
Author(s):  
Michalis Fragkos ◽  
Jaana Jurvansuu ◽  
Peter Beard

ABSTRACT Phosphorylation of H2AX (γH2AX) is an early sign of DNA damage induced by replication stalling. However, the role of H2AX in the repair of this type of DNA damage is still unclear. In this study, we used an inactivated adeno-associated virus (AAV) to induce a stalled replication fork signal and investigate the function of γH2AX. The cellular response to AAV provides a unique model to study γH2AX function, because the infection causes pannuclear H2AX phosphorylation without any signs of damage to the host genome. We found that pannuclear γH2AX formation is a result of ATR overactivation and diffusion but is independent of ATM. The inhibition of H2AX with RNA interference or the use of H2AX-deficient cells showed that γH2AX is dispensable for the formation and maintenance of DNA repair foci induced by stalled replication. However, in the absence of H2AX, the AAV-containing cells showed proteosome-dependent degradation of p21, followed by caspase-dependent mitotic catastrophe. In contrast, H2AX-proficient cells as well as H2AX-complemented H2AX−/− cells reacted by increasing p21 levels and arresting the cell cycle. The results establish a new role for H2AX in the p53/p21 pathway and indicate that H2AX is required for p21-induced cell cycle arrest after replication stalling.


Sarcoma ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-17 ◽  
Author(s):  
Paul M. Neilsen ◽  
Kathleen I. Pishas ◽  
David F. Callen ◽  
David M. Thomas

The p53 tumour suppressor plays a pivotal role in the prevention of oncogenic transformation. Cancers frequently evade the potent antitumour surveillance mechanisms of p53 through mutation of theTP53gene, with approximately 50% of all human malignancies expressing dysfunctional, mutated p53 proteins. Interestingly, genetic lesions in theTP53gene are only observed in 10% of Ewing Sarcomas, with the majority of these sarcomas expressing a functional wild-type p53. In addition, the p53 downstream signaling pathways and DNA-damage cell cycle checkpoints remain functionally intact in these sarcomas. This paper summarizes recent insights into the functional capabilities and regulation of p53 in Ewing Sarcoma, with a particular focus on the cross-talk between p53 and the EWS-FLI1 gene rearrangement frequently associated with this disease. The development of several activators of p53 is discussed, with recent evidence demonstrating the potential of small molecule p53 activators as a promising systemic therapeutic approach for the treatment of Ewing Sarcomas with wild-type p53.


Sign in / Sign up

Export Citation Format

Share Document