scholarly journals Courtship in Saccharomyces cerevisiae: an early cell-cell interaction during mating.

1990 ◽  
Vol 10 (5) ◽  
pp. 2202-2213 ◽  
Author(s):  
C L Jackson ◽  
L H Hartwell

During conjugation in Saccharomyces cerevisiae, two cells of opposite mating type (MATa and MAT alpha) fuse to form a diploid zygote. Conjugation requires that each cell locate an appropriate mating partner. To investigate how yeast cells select a mating partner, we developed a competition mating assay in which wild-type MAT alpha cells have a choice of two MATa cell mating partners. We first demonstrated that sterile MAT alpha 1 cells (expressing no a- or alpha-specific gene products) do not compete with fertile MATa cells in the assay; hence, wild-type MATa and MAT alpha cells can efficiently locate an appropriate mating partner. Second, we showed that a MATa strain need not be fertile to compete with a fertile MATa strain in the assay. This result defines an early step in conjugation, which we term courtship. We showed that the ability to agglutinate is not necessary in MATa cells for courtship but that production of a-pheromone and response to alpha-pheromone are necessary. Thus, MATa cells must not only transmit but must also receive and then respond to information for effective courtship; hence, there is a "conversation" between the courting cells. We showed that the only alpha-pheromone-induced response necessary in MATa cells for courtship is production of a-pheromone. In all cases tested, a strain producing a higher level of a-pheromone was more proficient in courtship than one producing a lower level. We propose that during courtship, a MAT alpha cell selects the adjacent MATa cell producing the highest level of a-pheromone.

1990 ◽  
Vol 10 (5) ◽  
pp. 2202-2213
Author(s):  
C L Jackson ◽  
L H Hartwell

During conjugation in Saccharomyces cerevisiae, two cells of opposite mating type (MATa and MAT alpha) fuse to form a diploid zygote. Conjugation requires that each cell locate an appropriate mating partner. To investigate how yeast cells select a mating partner, we developed a competition mating assay in which wild-type MAT alpha cells have a choice of two MATa cell mating partners. We first demonstrated that sterile MAT alpha 1 cells (expressing no a- or alpha-specific gene products) do not compete with fertile MATa cells in the assay; hence, wild-type MATa and MAT alpha cells can efficiently locate an appropriate mating partner. Second, we showed that a MATa strain need not be fertile to compete with a fertile MATa strain in the assay. This result defines an early step in conjugation, which we term courtship. We showed that the ability to agglutinate is not necessary in MATa cells for courtship but that production of a-pheromone and response to alpha-pheromone are necessary. Thus, MATa cells must not only transmit but must also receive and then respond to information for effective courtship; hence, there is a "conversation" between the courting cells. We showed that the only alpha-pheromone-induced response necessary in MATa cells for courtship is production of a-pheromone. In all cases tested, a strain producing a higher level of a-pheromone was more proficient in courtship than one producing a lower level. We propose that during courtship, a MAT alpha cell selects the adjacent MATa cell producing the highest level of a-pheromone.


1992 ◽  
Vol 12 (9) ◽  
pp. 4084-4092
Author(s):  
P C McCabe ◽  
H Haubruck ◽  
P Polakis ◽  
F McCormick ◽  
M A Innis

The rap1A gene encodes a 21-kDa, ras-related GTP-binding protein (p21rap1A) of unknown function. A close structural homolog of p21rap1A (65% identity in the amino-terminal two-thirds) is the RSR1 gene product (Rsr1p) of Saccharomyces cerevisiae. Although Rsr1p is not essential for growth, its presence is required for nonrandom selection of bud sites. To assess the similarity of these proteins at the functional level, wild-type and mutant forms of p21rap1A were tested for complementation of activities known to be fulfilled by Rsr1p. Expression of p21rap1A, like multicopy expression of RSR1, suppressed the conditional lethality of a temperature-sensitive cdc24 mutation. Point mutations predicted to affect the localization of p21rap1A or its ability to cycle between GDP and GTP-bound states disrupted suppression of cdc24ts, while other mutations in the 61-65 loop region improved suppression. Expression of p21rap1A could not, however, suppress the random budding phenotype of rsr1 cells. p21rap1A also apparently interfered with the normal activity of Rsrlp, causing random budding in diploid wild-type cells, suggesting an inability of p21rap1A to interact appropriately with Rsr1p regulatory proteins. Consistent with this hypothesis, we found an Rsr1p-specific GTPase-activating protein (GAP) activity in yeast membranes which was not active toward p21rap1A, indicating that p21rap1A may be predominantly GTP bound in yeast cells. Coexpression of human Rap1-specific GAP suppressed the random budding due to expression of p21rap1A or its derivatives, including Rap1AVal-12. Although Rap1-specific GAP stimulated the GTPase of Rsr1p in vitro, it did not dominantly interfere with Rsr1p function in vivo. A chimera consisting of Rap1A1-165::Rsr1p166-272 did not exhibit normal Rsr1p function in the budding pathway. These results indicated that p21rap1A and Rsr1p share at least partial functional homology, which may have implications for p21rap1A function in mammalian cells.


1989 ◽  
Vol 9 (11) ◽  
pp. 5228-5230 ◽  
Author(s):  
C A Keleher ◽  
S Passmore ◽  
A D Johnson

To bring about repression of a family fo genes in Saccharomyces cerevisiae called the a-specific genes, two transcriptional regulatory proteins, alpha 2 and GRM (general regulator of matin type), bind cooperatively to an operator found upstream of each a-specific gene. To date, GRM has been defined only biochemically. In this communication we show that the product of a single yeast gene (MCM1) is sufficient to bind cooperatively with alpha 2 to the operator. We also show that antiserum raised against the MCM1 gene product recognizes GRM from yeast cells. These results, in combination with previous observations, provide strong evidence that MCM1 encodes the GRM activity.


2001 ◽  
Vol 21 (1) ◽  
pp. 175-184 ◽  
Author(s):  
Omri Erez ◽  
Chaim Kahana

ABSTRACT Although most cells are capable of transporting polyamines, the mechanism that regulates polyamine transport in eukaryotes is still largely unknown. Using a genetic screen for clones capable of restoring spermine sensitivity to spermine-tolerant mutants ofSaccharomyces cerevisiae, we have demonstrated that Sky1p, a recently identified SR protein kinase, is a key regulator of polyamine transport. Yeast cells deleted for SKY1 developed tolerance to toxic levels of spermine, while overexpression of Sky1p in wild-type cells increased their sensitivity to spermine. Expression of the wild-type Sky1p but not of a catalytically inactive mutant restored sensitivity to spermine. SKY1 disruption results in dramatically reduced uptake of spermine, spermidine, and putrescine. In addition to spermine tolerance, sky1Δ cells exhibit increased tolerance to lithium and sodium ions but somewhat increased sensitivity to osmotic shock. The observed halotolerance suggests potential regulatory interaction between the transport of polyamines and inorganic ions, as suggested in the case of the Ptk2p, a recently described regulator of polyamine transport. We demonstrate that these two kinases act in two different signaling pathways. While deletion or overexpression of SKY1 did not significantly affect Pma1p activity, the ability of overexpressed Sky1p, Ptk1p, and Ptk2p to increase sensitivity to LiCl depends on the integrity ofPPZ1 but not of ENA1.


1978 ◽  
Vol 24 (6) ◽  
pp. 637-642 ◽  
Author(s):  
K. C. Thomas ◽  
Mary Spencer

Effects of the carbon source and oxygen on ethylene production by the yeast Saccharomyces cerevisiae have been studied. The amounts of ethylene evolved by the yeast culture were less than those detected in the blank (an equal volume of uninoculated medium), suggesting a net absorption of ethylene by the yeast cells. Addition of glucose to the lactate-grown yeast culture induced ethylene production. This glucose-induced stimulation of ethylene production was inhibited to a great extent by cycloheximide. Results suggested that the yeast cells in the presence of glucose synthesized an ethylene precursor and passed it into the medium. The conversion of this precursor to ethylene might be stimulated by oxygen. The fact that ethylene was produced by the yeast growing anaerobically and also by respiration-deficient mutants isolated from the wild-type yeast suggested that mitochondrial ATP synthesis was not an absolute requirement for ethylene biogenesis.


1988 ◽  
Vol 8 (1) ◽  
pp. 309-320 ◽  
Author(s):  
E E Jarvis ◽  
D C Hagen ◽  
G F Sprague

STE3 mRNA is present only in Saccharomyces cerevisiae alpha cells, not in a or a/alpha cells, and the transcript level increases about fivefold when cells are treated with a-factor mating pheromone. Deletions in the 5' noncoding region of STE3 defined a 43-base-pair (bp) upstream activation sequence (UAS) that can impart both modes of regulation to a CYC1-lacZ fusion when substituted for the native CYC1 UAS. UAS activity required the alpha 1 product of MAT alpha, which is known to be required for transcription of alpha-specific genes. A chromosomal deletion that removed only 14 bp of the STE3 UAS reduced STE3 transcript levels 50- to 100-fold, indicating that the UAS is essential for expression. The STE3 UAS shares a 26-bp homology with the 5' noncoding sequences of the only other known alpha-specific genes, MF alpha 1 and MF alpha 2. We view the homology as having two components--a nearly palindromic 16-bp "P box" and an adjacent 10-bp "Q box." A synthetic STE3 P box was inactive as a UAS; a perfect palindrome P box was active in all three cell types. We propose that the P box is the binding site for a transcription activator, but that alpha 1 acting via the Q box is required for this activator to bind to the imperfect P boxes of alpha-specific genes. Versions of the P box are also found upstream of a-specific genes, within the binding sites of the repressor alpha 2 encoded by MAT alpha. Thus, the products of MAT alpha may render gene expression alpha or a-specific by controlling access of the same transcription activator to its binding site, the P box.


1989 ◽  
Vol 9 (9) ◽  
pp. 3992-3998
Author(s):  
A M Dranginis

STA1 encodes a secreted glucoamylase of the yeast Saccharomyces cerevisiae var. diastaticus. Glucoamylase secretion is controlled by the mating type locus MAT; a and alpha haploid yeast cells secrete high levels of the enzyme, but a/alpha diploid cells produce undetectable amounts. It has been suggested that STA1 is regulated by MATa2 (I. Yamashita, Y. Takano, and S. Fukui, J. Bacteriol. 164:769-773, 1985), which is a MAT transcript of previously unknown function. In contrast, this work shows that deletion of the entire MATa2 gene had no effect on STA1 regulation but that deletion of MATa1 sequences completely abolished mating-type control. In all cases, glucoamylase activity levels reflected STA1 mRNA levels. It appears that STA1 is a haploid-specific gene that is regulated by MATa1 and a product of the MAT alpha locus and that this regulation occurs at the level of RNA accumulation. STA1 expression was also shown to be glucose repressible. STA1 mRNA was induced in diploids during sporulation along with SGA, a closely linked gene that encodes an intracellular sporulation-specific glucoamylase of S. cerevisiae. A diploid strain with a MATa1 deletion showed normal induction of STA1 in sporulation medium, but SGA expression was abolished. Therefore, these two homologous and closely linked glucoamylase genes are induced by different mechanisms during sporulation. STA1 induction may be a response to the starvation conditions necessary for sporulation, while SGA induction is governed by the pathway by which MAT regulates sporulation. The strain containing a complete deletion of MATa2 grew, mated, and sporulated normally.


1986 ◽  
Vol 6 (11) ◽  
pp. 3990-3998
Author(s):  
S Harashima ◽  
A G Hinnebusch

GCN4 encodes a positive regulator of multiple unlinked genes encoding amino acid biosynthetic enzymes in Saccharomyces cerevisiae. Expression of GCN4 is coupled to amino acid availability by a control mechanism involving GCD1 as a negative effector and GCN1, GCN2, and GCN3 as positive effectors of GCN4 expression. We used reversion of a gcn2 gcn3 double mutation to isolate new alleles of GCD1 and mutations in four additional GCD genes which we designate GCD10, GCD11, GCD12, and GCD13. All of the mutations lead to constitutive derepression of HIS4 transcription in the absence of the GCN2+ and GCN3+ alleles. By contrast, the gcd mutations require the wild-type GCN4 allele for their derepressing effect, suggesting that each acts by influencing the level of GCN4 activity in the cell. Consistent with this interpretation, mutations in each GCD gene lead to constitutive derepression of a GCN4::lacZ gene fusion. Thus, at least five gene products are required to maintain the normal repressed level of GCN4 expression in nonstarvation conditions. Interestingly, the gcd mutations are pleiotropic and also affect growth rate in nonstarvation conditions. In addition, certain alleles lead to a loss of M double-stranded RNA required for the killer phenotype. This pleiotropy suggests that the GCD gene products contribute to an essential cellular function, in addition to, or in conjunction with, their role in GCN4 regulation.


1986 ◽  
Vol 6 (4) ◽  
pp. 1218-1227
Author(s):  
L Naumovski ◽  
E C Friedberg

The RAD3 gene of Saccharomyces cerevisiae, which is involved in excision repair of DNA and is essential for cell viability, was mutagenized by site-specific and random mutagenesis. Site-specific mutagenesis was targeted to two regions near the 5' and 3' ends of the coding region, selected on the basis of amino acid sequence homology with known nucleotide binding and with known specific DNA-binding proteins, respectively. Two mutations in the putative nucleotide-binding region and one in the putative DNA-binding region inactivate the excision repair function of the gene, but not the essential function. A gene encoding two tandem mutations in the putative DNA-binding region is defective in both excision repair and essential functions of RAD3. Seven plasmids were isolated following random mutagenesis with hydroxylamine. Mutations in six of these plasmids were identified by gap repair of mutant plasmids from the chromosome of strains with previously mapped rad3 mutations, followed by DNA sequencing. Three of these contain missense mutations which inactivate only the excision repair function. The other three carry nonsense mutations which inactivate both the excision repair and essential functions. Collectively our results indicate that the RAD3 excision repair function is more sensitive to inactivation than is the essential function. Overexpression of wild-type Rad3 protein and a number of rad3 mutant proteins did not affect the UV resistance of wild-type yeast cells. However, overexpression of Rad3-2 protein rendered wild-type cells partially UV sensitive, indicating that excess Rad3-2 protein is dominant to the wild-type form. These and other results suggest that Rad3-2 protein retains its affinity for damaged DNA or other substrates, but is not catalytically active in excision repair.


2000 ◽  
Vol 6 (S2) ◽  
pp. 680-681 ◽  
Author(s):  
T. M. Bourett ◽  
K. J. Czymmek ◽  
T. M. Dezwaan ◽  
J. A. Sweigard ◽  
R. J. Howard

Specific gene products of both pathogens and hosts have been implicated as decisive elements during plant pathogenesis. While expression of some of these genes is constitutive, that of others is likely ephemeral and activated only during a particular stage of the interaction. Because the relative timing of expression may be critical, transcription and translation have often been addressed by extracting mRNA and proteins from infected plant tissue. This approach, however, cannot readily detect proteins of low abundance in bulk samples nor offer much useful information on cell-cell interaction. Only a cytological analysis that employs microscopy can resolve the temporal and spatial details of gene expression. Typically, such protein localization studies have required specific antibodies, but these large probe molecules do not diffuse into living or conventionally fixed cells of either fungal pathogens or plant hosts. For TEM analysis, these permeability-imposed limitations have been reduced by thin sectioning to render accessible antibody binding sites.


Sign in / Sign up

Export Citation Format

Share Document