Formation of heteroduplex DNA during mammalian intrachromosomal gene conversion

1992 ◽  
Vol 12 (4) ◽  
pp. 1546-1552
Author(s):  
R J Bollag ◽  
D R Elwood ◽  
E D Tobin ◽  
A R Godwin ◽  
R M Liskay

We have studied intrachromosomal gene conversion in mouse Ltk- cells with a substrate designed to provide genetic evidence for heteroduplex DNA. Our recombination substrate consists of two defective chicken thymidine kinase genes arranged so as to favor the selection of gene conversion products. The gene intended to serve as the recipient in gene conversion differs from the donor sequence by virtue of a palindromic insertion that creates silent restriction site polymorphisms between the two genes. While selection for gene conversion at a XhoI linker insertion within the recipient gene results in coconversion of the nearby palindromic site in more than half of the convertants, 4% of convertant colonies show both parental and nonparental genotypes at the polymorphic site. We consider these mixed colonies to be the result of genotypic sectoring and interpret this sectoring to be a consequence of unrepaired heteroduplex DNA at the polymorphic palindromic site. DNA replication through the heteroduplex recombination intermediate generates genetically distinct daughter cells that comprise a single colony. We believe that the data provide the first compelling genetic evidence for the presence of heteroduplex DNA during chromosomal gene conversion in mammalian cells.

1992 ◽  
Vol 12 (4) ◽  
pp. 1546-1552 ◽  
Author(s):  
R J Bollag ◽  
D R Elwood ◽  
E D Tobin ◽  
A R Godwin ◽  
R M Liskay

We have studied intrachromosomal gene conversion in mouse Ltk- cells with a substrate designed to provide genetic evidence for heteroduplex DNA. Our recombination substrate consists of two defective chicken thymidine kinase genes arranged so as to favor the selection of gene conversion products. The gene intended to serve as the recipient in gene conversion differs from the donor sequence by virtue of a palindromic insertion that creates silent restriction site polymorphisms between the two genes. While selection for gene conversion at a XhoI linker insertion within the recipient gene results in coconversion of the nearby palindromic site in more than half of the convertants, 4% of convertant colonies show both parental and nonparental genotypes at the polymorphic site. We consider these mixed colonies to be the result of genotypic sectoring and interpret this sectoring to be a consequence of unrepaired heteroduplex DNA at the polymorphic palindromic site. DNA replication through the heteroduplex recombination intermediate generates genetically distinct daughter cells that comprise a single colony. We believe that the data provide the first compelling genetic evidence for the presence of heteroduplex DNA during chromosomal gene conversion in mammalian cells.


The Analyst ◽  
2017 ◽  
Vol 142 (21) ◽  
pp. 4030-4038 ◽  
Author(s):  
Kazuki Hirose ◽  
Maho Tsuchida ◽  
Hinako Asakura ◽  
Koji Wakui ◽  
Keitaro Yoshimoto ◽  
...  

A single-round DNA aptamer selection for mammalian cells was successfully achieved for the first time using a capillary electrophoresis (CE)-based methodology.


Genetics ◽  
1999 ◽  
Vol 151 (4) ◽  
pp. 1559-1568 ◽  
Author(s):  
Tamas Lukacsovich ◽  
Alan S Waldman

Abstract Pairs of closely linked defective herpes simplex virus (HSV) thymidine kinase (tk) gene sequences exhibiting various nucleotide heterologies were introduced into the genome of mouse Ltk– cells. Recombination events were recovered by selecting for the correction of a 16-bp insertion mutation in one of the tk sequences. We had previously shown that when two tk sequences shared a region of 232 bp of homology, interruption of the homology by two single nucleotide heterologies placed 19 bp apart reduced recombination nearly 20-fold. We now report that either one of the nucleotide heterologies alone reduces recombination only about 2.5-fold, indicating that the original pair of single nucleotide heterologies acted synergistically to inhibit recombination. We tested a variety of pairs of single nucleotide heterologies and determined that they reduced recombination from 7- to 175-fold. Substrates potentially leading to G-G or C-C mispairs in presumptive heteroduplex DNA (hDNA) intermediates displayed a particularly low rate of recombination. Additional experiments suggested that increased sequence divergence causes a shortening of gene conversion tracts. Collectively, our results suggest that suppression of recombination between diverged sequences is mediated via processing of a mispaired hDNA intermediate.


Genetics ◽  
1987 ◽  
Vol 117 (4) ◽  
pp. 759-769
Author(s):  
Anthea Letsou ◽  
R Michael Liskay

ABSTRACT With the intent of further exploring the nature of gene conversion in mammalian cells, we systematically addressed the effects of the molecular nature of mutation on the efficiency of intrachromosomal gene conversion in cultured mouse cells. Comparison of conversion rates revealed that all mutations studied were suitable substrates for gene conversion; however, we observed that the rates at which different mutations converted to wild-type could differ by two orders of magnitude. Differences in conversion rates were correlated with the molecular nature of the mutations. In general, rates of conversion decreased with increasing size of the molecular lesions. In comparisons of conversion rates for single base pair insertions and deletions we detected a genotype-directed path for conversion, by which an insertion was converted to wild-type three to four times more efficiently than was a deletion which maps to the same site. The data are discussed in relation to current theories of gene conversion, and are consistent with the idea that gene conversion in mammalian cells can result from repair of heteroduplex DNA (hDNA) intermediates.


2000 ◽  
Vol 20 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Annie Tremblay ◽  
Maria Jasin ◽  
Pierre Chartrand

ABSTRACT A double-strand break (DSB) in the mammalian genome has been shown to be a very potent signal for the cell to activate repair processes. Two different types of repair have been identified in mammalian cells. Broken ends can be rejoined with or without loss or addition of DNA or, alternatively, a homologous template can be used to repair the break. For most genomic sequences the latter event would involve allelic sequences present on the sister chromatid or homologous chromosome. However, since more than 30% of our genome consists of repetitive sequences, these would have the option of using nonallelic sequences for homologous repair. This could have an impact on the evolution of these sequences and of the genome itself. We have designed an assay to look at the repair of DSBs in LINE-1 (L1) elements which number 105 copies distributed throughout the genome of all mammals. We introduced into the genome of mouse epithelial cells an L1 element with an I-SceI endonuclease site. We induced DSBs at the I-SceI site and determined their mechanism of repair. We found that in over 95% of cases, the DSBs were repaired by an end-joining process. However, in almost 1% of cases, we found strong evidence for repair involving gene conversion with various endogenous L1 elements, with some being used preferentially. In particular, the TF family and the L1Md-A2 subfamily, which are the most active in retrotransposition, appeared to be contributing the most in this process. The degree of homology did not seem to be a determining factor in the selection of the endogenous elements used for repair but may be based instead on accessibility. Considering their abundance and dispersion, gene conversion between repetitive elements may be occurring frequently enough to be playing a role in their evolution.


Genetics ◽  
1990 ◽  
Vol 126 (4) ◽  
pp. 813-822 ◽  
Author(s):  
N P Schultes ◽  
J W Szostak

Abstract We have constructed eight restriction site polymorphisms in the DED81-ARG4 region and examined their behavior during meiotic recombination. Tetrad analysis reveals decreasing gradients of gene conversion on both sides of the initiation site for meiotic recombination at the ARG4 locus, extending on one side into the ARG4 gene, and on the other side into the adjacent DED81 gene. Gene conversion events can extend in both directions from the initiation site as the result of a single meiotic event. There is a second gradient of gene conversion in DED81, with high levels near the 5' end of the gene and low levels near the middle of the gene. The peaks of gene conversion activity for the DED81 and ARG4 gradients map to regions where double-strand breaks are found during meiosis. The implications of these results for models of meiotic gene conversion are discussed.


Methodology ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 177-188 ◽  
Author(s):  
Martin Schultze ◽  
Michael Eid

Abstract. In the construction of scales intended for the use in cross-cultural studies, the selection of items needs to be guided not only by traditional criteria of item quality, but has to take information about the measurement invariance of the scale into account. We present an approach to automated item selection which depicts the process as a combinatorial optimization problem and aims at finding a scale which fulfils predefined target criteria – such as measurement invariance across cultures. The search for an optimal solution is performed using an adaptation of the [Formula: see text] Ant System algorithm. The approach is illustrated using an application to item selection for a personality scale assuming measurement invariance across multiple countries.


2016 ◽  
Vol 11 (3) ◽  
pp. 217
Author(s):  
Estu Nugroho ◽  
Budi Setyono ◽  
Mochammad Su’eb ◽  
Tri Heru Prihadi

Program pemuliaan ikan mas varietas Punten dilakukan dengan seleksi individu terhadap karakter bobot ikan. Pembentukan populasi dasar untuk kegiatan seleksi dilakukan dengan memijahkan secara massal induk ikan mas yang terdiri atas 20 induk betina dan 21 induk jantan yang dikoleksi dari daerah Punten, Kepanjen (delapan betina dan enam jantan), Kediri (tujuh betina dan 12 jantan), Sragen (27 betina dan 10 jantan), dan Blitar (15 betina dan 11 jantan). Larva umur 10 hari dipelihara selama empat bulan. Selanjutnya dilakukan penjarangan sebesar 50% dan benih dipelihara selama 14 bulan untuk dilakukan seleksi dengan panduan hasil sampling 250 ekor individu setiap populasi. Seleksi terhadap calon induk dilakukan saat umur 18 bulan pada populasi jantan dan betina secara terpisah dengan memilih berdasarkan 10% bobot ikan yang terbaik. Calon induk yang terseleksi kemudian dipelihara hingga matang gonad, kemudian dipilih sebanyak 150 pasang dan dipijahkan secara massal. Didapatkan respons positif dari hasil seleksi berdasarkan bobot ikan, yaitu 49,89 g atau 3,66% (populasi ikan jantan) dan 168,47 g atau 11,43% (populasi ikan betina). Nilai heritabilitas untuk bobot ikan adalah 0,238 (jantan) dan 0,505 (betina).Punten carp breeding programs were carried out by individual selection for body weight trait. The base population for selection activities were conducted by mass breeding of parent consisted of 20 female and 21 male collected from area Punten, eight female and six male (Kepanjen), seven female and 12 male (Kediri), 27 female and 10 male (Sragen), 15 female and 11 male (Blitar). Larvae 10 days old reared for four moths. Then after spacing out 50% of total harvest, the offspring reared for 14 months for selection activity based on the sampling of 250 individual each population. Selection of broodstock candidates performed since 18 months age on male and female populations separately by selecting based on 10% of fish with best body weight. Candidates selected broodstocks were then maintained until mature. In oder to produce the next generation 150 pairs were sets and held for mass spawning. The results revealed that selection response were positive, 49.89 g (3.66%) for male and 168.47 (11.43%) for female. Heritability for body weight is 0.238 (male) and 0.505 (female).


Confectionery sunflower - a special area of use of sunflower, which requires the creation of marketable seeds quality features. One of the possible ways to create large-fruited sunflower is to create production hybrids and lines. Objective: to evaluate the created new large-fruited sunflower lines by a complex of morphological characters and determine the best lines for use as large-seeds hybrids as parent components or source material. In 2016-2019 years on the basis of the Institute of Oilseed Crops NAAS a study was conducted to assess the economic characteristics of large-fruited sunflower lines. We studied a collection of 27 lines of large-seeds sources. The lines were created by direct selection or crossing and sampling: Reyny of Argentinean origin, Zaporizhzhya confectionery variety, confectionery hybrid with striped pericarp color of Israeli origin, white seed of Turkish origin, synthetic population - donor of complex resistance. To study from the collection, lines were drawn that went through at least 7 generations with selection for seed size. Experience has shown that the shortest growing season for lines 174d and KP11 was 99 days, and the longest for lines I2K670 was 109 days. In the studied collection, the greatest mass of 1000 seeds has the KP11-146.47g line, which is the mother component and does not have branching. The second by weight of 1000 seeds (109 g) stood out line 168v, which also had branches and pollen fertility restoration genes and will be used as the paternal form. The third largest is also one basket line ZKN51-100. The collection included lines originating from the same combination, but with a different morphotype for the presence and absence of branching. So, based on the combination of KP11 x Zaporizhzhya Confectionery, three lines were obtained. A mass of 1000 seeds was observed in 98-86 g, with the branching line having the largest mass of 1000 seeds. The lines created with one combination VK678 x ZKN32: with a branch 168a had a mass of 1000 seeds 95g, and a line 168b - without a branch 109 g. Of the two lines obtained from the descendants of the combination KP11 x the striped hybrid both had branches, but the seeds were much smaller (weight of 1000 seeds 59 and 79 g). The collection also studied samples created on the basis of varieties and populations 160c, 174, 175b, the mass of 1000 seeds of which turned out to be more acceptable for large-fruited use from 83 to 99 g. Summing up the results of studying the collection of newly created lines, we can highlight the lines 162d, 168v, 175b, KP11 that are potentially promising for use in hybrids. The selections showed that large-fruited lines can be obtained from large-fruited varieties, self-pollination of large-fruited hybrids and crossing lines with hybrids and varieties. Self-pollination and selection of large-fruited lines in several generations does not provide the necessary variability for positive changes in selections. The result of the selection by weight of 1000 seeds in the offspring from crosses and from populations creates opportunities for new large-seeds sunflower.


Sign in / Sign up

Export Citation Format

Share Document