scholarly journals The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis.

1993 ◽  
Vol 13 (7) ◽  
pp. 3882-3889 ◽  
Author(s):  
C Prior ◽  
P Mamessier ◽  
H Fukuhara ◽  
X J Chen ◽  
M Wesolowski-Louvel

The RAG1 gene of Kluyveromyces lactis encodes a low-affinity glucose/fructose transporter. Its transcription is induced by glucose, fructose, and several other sugars. The RAG4, RAG5, and RAG8 genes are trans-acting genes controlling the expression of the RAG1 gene. We report here the characterization of one of these genes, RAG5. The nucleotide sequence of the cloned RAG5 gene indicated that it encodes a protein that is homologous to hexokinases of Saccharomyces cerevisiae. rag5 mutants showed no detectable hexokinase or glucokinase activity, suggesting that the sugar kinase activity encoded by this gene is the only hexokinase in K. lactis. Both high- and low-affinity transport systems of glucose were affected in rag5 mutants. The defect of the low-affinity component was found to be due to a block of transcription of the RAG1 gene by the hexokinase mutation. In vivo complementation of the rag5 mutation by the HXK2 gene of S. cerevisiae and complementation of hxk1 hxk2 mutations of S. cerevisiae by the RAG5 gene showed that RAG5 and HXK2 were equivalent for sugar-phosphorylating activity but that RAG5 could not restore glucose repression in the S. cerevisiae hexokinase mutants.

1993 ◽  
Vol 13 (7) ◽  
pp. 3882-3889
Author(s):  
C Prior ◽  
P Mamessier ◽  
H Fukuhara ◽  
X J Chen ◽  
M Wesolowski-Louvel

The RAG1 gene of Kluyveromyces lactis encodes a low-affinity glucose/fructose transporter. Its transcription is induced by glucose, fructose, and several other sugars. The RAG4, RAG5, and RAG8 genes are trans-acting genes controlling the expression of the RAG1 gene. We report here the characterization of one of these genes, RAG5. The nucleotide sequence of the cloned RAG5 gene indicated that it encodes a protein that is homologous to hexokinases of Saccharomyces cerevisiae. rag5 mutants showed no detectable hexokinase or glucokinase activity, suggesting that the sugar kinase activity encoded by this gene is the only hexokinase in K. lactis. Both high- and low-affinity transport systems of glucose were affected in rag5 mutants. The defect of the low-affinity component was found to be due to a block of transcription of the RAG1 gene by the hexokinase mutation. In vivo complementation of the rag5 mutation by the HXK2 gene of S. cerevisiae and complementation of hxk1 hxk2 mutations of S. cerevisiae by the RAG5 gene showed that RAG5 and HXK2 were equivalent for sugar-phosphorylating activity but that RAG5 could not restore glucose repression in the S. cerevisiae hexokinase mutants.


2001 ◽  
Vol 183 (18) ◽  
pp. 5223-5229 ◽  
Author(s):  
C. Milkowski ◽  
S. Krampe ◽  
J. Weirich ◽  
V. Hasse ◽  
E. Boles ◽  
...  

ABSTRACT In the respirofermentative yeast Kluyveromyces lactis, only a single genetic locus encodes glucose transporters that can support fermentative growth. This locus is polymorphic in wild-type isolates carrying either KHT1and KHT2, two tandemly arranged HXT-like genes, or RAG1, a low-affinity transporter gene that arose by recombination between KHT1 andKHT2. Here we show that KHT1 is a glucose-induced gene encoding a low-affinity transporter very similar to Rag1p. Kht2p has a lower K m (3.7 mM) and a more complex regulation. Transcription is high in the absence of glucose, further induced by low glucose concentrations, and repressed at higher glucose concentrations. The response ofKHT1 and KHT2 gene regulation to high but not to low concentrations of glucose depends on glucose transport. The function of either Kht1p or Kht2p is sufficient to mediate the characteristic response to high glucose, which is impaired in akht1 kht2 deletion mutant. Thus, the KHTgenes are subject to mutual feedback regulation. Moreover, glucose repression of the endogenous β-galactosidase (LAC4) promoter and glucose induction of pyruvate decarboxylase were abolished in the kht1 kht2 mutant. These phenotypes could be partially restored by HXT gene family members fromSaccharomyces cerevisiae. The results indicate that the specific responses to high but not to low glucose concentrations require a high rate of glucose uptake.


2008 ◽  
Vol 200 (1) ◽  
pp. 23-33 ◽  
Author(s):  
S Schmidt ◽  
A Hommel ◽  
V Gawlik ◽  
R Augustin ◽  
N Junicke ◽  
...  

Deletion of glucose transporter geneSlc2a3(GLUT3) has previously been reported to result in embryonic lethality. Here, we define the exact time point of growth arrest and subsequent death of the embryo.Slc2a3−/−morulae and blastocysts developed normally, implantedin vivo, and formed egg-cylinder-stage embryos that appeared normal until day 6.0. At day 6.5, apoptosis was detected in the ectodermal cells ofSlc2a3−/−embryos resulting in severe disorganization and growth retardation at day 7.5 and complete loss of embryos at day 12.5. GLUT3 was detected in placental cone, in the visceral ectoderm and in the mesoderm of 7.5-day-old wild-type embryos. Our data indicate that GLUT3 is essential for the development of early post-implanted embryos.


2000 ◽  
Vol 167 (1) ◽  
pp. 107-115 ◽  
Author(s):  
J Shao ◽  
H Yamashita ◽  
L Qiao ◽  
JE Friedman

Recent studies suggest that the serine/threonine kinase protein kinase B (PKB or Akt) is involved in the pathway for insulin-stimulated glucose transporter 4 (GLUT4) translocation and glucose uptake. In this study we examined the components of the Akt signaling pathway in skeletal muscle and adipose tissue in vivo from C57BL/KsJ-Lepr(db/db) mice (db/db), a model of obesity, insulin resistance, and type II diabetes. There were no changes in the protein levels of GLUT4, p85alpha, or Akt in tissues from db/db mice compared with non-diabetic littermate controls (+/+). In response to acute insulin administration, GLUT4 recruitment to the plasma membrane increased twofold in muscle and adipose tissue from +/+ mice, but was significantly reduced by 42-43% (P<0.05) in both tissues from db/db mice. Insulin increased Akt-Ser(473) phosphorylation by two- to fivefold in muscle and adipose tissue from all mice. However, in db/db mice, maximal Akt-Ser(473) phosphorylation was decreased by 32% (P<0.05) and 69% (P<0.05) in muscle and adipose tissue respectively. This decreased phosphorylation in db/db mice corresponded with a significant decrease in maximal Akt kinase activity using a glycogen synthase kinase-3 fusion protein as a substrate (P<0.05). The level of insulin-stimulated tyrosine phosphorylation of p85alpha from phosphatidylinositol 3 (PI 3)-kinase, which is upstream of Akt, was also reduced in muscle and adipose tissue from db/db mice (P<0.05); however, there was no change in extracellular signal-regulated kinase-1 or -2 phosphorylation. These data implicate decreased insulin-stimulated Akt kinase activity as an important component underlying impaired GLUT4 translocation and insulin resistance in tissues from db/db mice. However, impaired insulin signal transduction appears to be specific for the PI 3-kinase pathway of insulin signaling, while the MAP kinase pathway remained intact.


2011 ◽  
Vol 22 (1) ◽  
pp. 141-152 ◽  
Author(s):  
Xiao-Wei Chen ◽  
Dara Leto ◽  
Tingting Xiong ◽  
Genggeng Yu ◽  
Alan Cheng ◽  
...  

Insulin stimulates glucose transport in muscle  and adipose tissue by translocation of glucose transporter 4 (GLUT4) to the plasma membrane. We previously reported that activation of the small GTPase RalA downstream of PI 3-kinase plays a critical role in this process by mobilizing the exocyst complex for GLUT4 vesicle targeting in adipocytes. Here we report the identification and characterization of a Ral GAP complex (RGC) that mediates the activation of RalA downstream of the PI 3-kinase/Akt pathway. The complex is composed of an RGC1 regulatory subunit and an RGC2 catalytic subunit (previously identified as AS250) that directly stimulates the guanosine triphosphate hydrolysis of RalA. Knockdown of RGC proteins leads to increased RalA activity and glucose uptake in adipocytes. Insulin inhibits the GAP complex through Akt2-catalyzed phosphorylation of RGC2 in vitro and in vivo, while activated Akt relieves the inhibitory effect of RGC proteins on RalA activity. The RGC complex thus connects PI 3-kinase/Akt activity to the transport machineries responsible for GLUT4 translocation.


1987 ◽  
Vol 7 (3) ◽  
pp. 1111-1121 ◽  
Author(s):  
L V Wray ◽  
M M Witte ◽  
R C Dickson ◽  
M I Riley

Lactose or galactose induces the expression of the lactose-galactose regulon in Kluyveromyces lactis. We show here that the regulon is not induced in strains defective in LAC9. We demonstrate that this gene codes for a regulatory protein that acts in a positive manner to induce transcription. The LAC9 gene was isolated by complementation of a lac9 defective strain. DNA sequence analysis of the gene gave a deduced protein of 865 amino acids. Comparison of this sequence with that of the GAL4 protein of Saccharomyces cerevisiae revealed three regions of homology. One region of about 90 amino acid occurs at the amino terminus, which is known to mediate binding of GAL4 protein to upstream activator sequences. We speculate that a portion of this region, adjacent to the "metal-binding finger," specifies DNA binding. We discuss possible functions of the two other regions of homology. The functional implications of these structural similarities were examined. When LAC9 was introduced into a gal4 defective strain of S. cerevisiae it complemented the mutation and activated the galactose-melibiose regulon. However, LAC9 did not simply mimic GAL4. Unlike normal S. cerevisiae carrying GAL4, the strain carrying LAC9 gave constitutive expression of GAL1 and MEL1, two genes in the regulon. The strain did show glucose repression of the regulon, but repression was less severe with LAC9 than with GAL4. We discuss the implications of these results and how they may facilitate our understanding of the LAC9 and GAL4 regulatory proteins.


1995 ◽  
Vol 311 (1) ◽  
pp. 307-315 ◽  
Author(s):  
P Schneider ◽  
A Nikolaev ◽  
M A Ferguson

GDP-D-arabinopyranose (GDP-D-Ara) is the precursor of the uncommon D-arabinopyranose residues present in the glycoconjugates of a few trypanosomatid parasites. Biosynthetic labelling experiments with Crithidia fasciculata showed that GDP-D-Ara could be labelled with [3H]D-Ara, [2-3H]D-Glc and [6-3H]D-Glc, but not with [1-3H]D-Glc, suggesting that D-Ara can be either taken up directly by the parasite or derived from D-Glc through a pathway involving the loss of carbon C-1. In vivo pulse-chase experiments indicated that D-Ara was sequentially incorporated into D-Ara-1-PO4 and GDP-D-Ara prior to transfer to the acceptor glycoconjugate, lipoarabinogalactan. An MgATP-dependent D-arabino-1-kinase activity present in soluble extracts of C. fasciculata was purified away from phosphatase activities by size-exclusion chromatography. The D-arabino-1-kinase had an apparent molecular mass of 600 kDa, a neutral optimum pH, and displayed substrate inhibition at D-Ara concentrations above 100 microM. It had a KmATP of 1.7 mM and a KmAra of 24 microM. Competition studies indicated that the orientation of every single hydroxyl residue was important for D-Ara recognition by the enzyme, but that methyl or hydroxymethyl groups could be tolerated as equatorial substituents on C-5 of D-Ara. The partially purified D-arabino-1-kinase activity was used in the chemico-enzymic synthesis of GDP-[5-3H]D-Ara from [6-3H]D-GlcN.


2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Rosa Santomartino ◽  
Daniela Ottaviano ◽  
Ilaria Camponeschi ◽  
Tracy Ann Alcarpio Landicho ◽  
Luca Falato ◽  
...  

ABSTRACTGlucose is the preferred nutrient for most living cells and is also a signaling molecule that modulates several cellular processes. Glucose regulates the expression of glucose permease genes in yeasts through signaling pathways dependent on plasma membrane glucose sensors. In the yeast Kluyveromyces lactis, sufficient levels of glucose induction of the low-affinity glucose transporter RAG1 gene also depends on a functional glycolysis, suggesting additional intracellular signaling. We have found that the expression of RAG1 gene is also induced by hypoxia in the presence of glucose, indicating that glucose and oxygen signaling pathways are interconnected. In this study we investigated the molecular mechanisms underlying this crosstalk. By analyzing RAG1 expression in various K. lactis mutants, we found that the bHLH transcriptional activator Sck1 is required for the hypoxic induction of RAG1 gene. The RAG1 promoter region essential for its hypoxic induction was identified by promoter deletion experiments. Taken together, these results show that the RAG1 glucose permease gene is synergistically induced by hypoxia and glucose and highlighted a novel role for the transcriptional activator Sck1 as a key mediator in this mechanism.


2003 ◽  
Vol 185 (1) ◽  
pp. 332-339 ◽  
Author(s):  
Michael Dougherty ◽  
Diana M. Downs

ABSTRACT In bacteria the biosynthetic pathways for purine mononucleotides and the hydroxymethyl pyrimidine moiety of thiamine share five reactions that result in the formation of aminoimidazole ribotide, the last metabolite common to both pathways. Here we describe the characterization of a Salmonella enterica mutant strain that has gained the ability to efficiently use exogenous aminoimidazole riboside (AIRs) as a source of thiamine. The lesion responsible for this phenotype is a null mutation in a transcriptional regulator of the GntR family (encoded by stm4068). Lack of this protein derepressed transcription of an associated operon (stm4065-4067) that encoded a predicted kinase. The stm4066 gene product was purified and shown to have AIRs kinase activity in vitro. This activity was consistent with the model presented to explain the phenotype caused by the original mutation. This mutation provides a genetic means to isolate the synthesis of the hydroxymethyl pyrimidine moiety of thiamine from the pathway for purine mononucleotide biosynthesis and thus facilitate in vivo analyses.


Sign in / Sign up

Export Citation Format

Share Document