scholarly journals His-154 is involved in the linkage of the Saccharomyces cerevisiae L-A double-stranded RNA virus Gag protein to the cap structure of mRNAs and is essential for M1 satellite virus expression.

1994 ◽  
Vol 14 (4) ◽  
pp. 2664-2674 ◽  
Author(s):  
A Blanc ◽  
J C Ribas ◽  
R B Wickner ◽  
N Sonenberg

The coat protein (Gag) of the double-stranded RNA virus L-A was previously shown to form a covalent bond with the cap structure of eukaryotic mRNAs. Here, we identify the linkage as a phosphoroimidazole bond between the alpha phosphate of the cap structure and a nitrogen in the Gag protein His-154 imidazole side chain. Mutations of His-154 abrogate the ability of Gag to bind to the cap structure, without affecting cap recognition, in vivo virus particle formation from an L-A cDNA clone, or in vitro specific binding and replication of plus-stranded single-stranded RNA. However, genetic analyses demonstrate that His-154 is essential for M1 satellite virus expression.

1994 ◽  
Vol 14 (4) ◽  
pp. 2664-2674
Author(s):  
A Blanc ◽  
J C Ribas ◽  
R B Wickner ◽  
N Sonenberg

The coat protein (Gag) of the double-stranded RNA virus L-A was previously shown to form a covalent bond with the cap structure of eukaryotic mRNAs. Here, we identify the linkage as a phosphoroimidazole bond between the alpha phosphate of the cap structure and a nitrogen in the Gag protein His-154 imidazole side chain. Mutations of His-154 abrogate the ability of Gag to bind to the cap structure, without affecting cap recognition, in vivo virus particle formation from an L-A cDNA clone, or in vitro specific binding and replication of plus-stranded single-stranded RNA. However, genetic analyses demonstrate that His-154 is essential for M1 satellite virus expression.


2005 ◽  
Vol 86 (9) ◽  
pp. 2595-2603 ◽  
Author(s):  
Lionel Ballut ◽  
Martin Drucker ◽  
Martine Pugnière ◽  
Florence Cambon ◽  
Stéphane Blanc ◽  
...  

The proteasome is a multicatalytic complex involved in many cellular processes in eukaryotes, such as protein and RNA turnover, cell division, signal transduction, transcription and translation. Intracellular pathogens are targets of its enzymic activities, and a number of animal viruses are known to interfere with these activities. The first evidence that a plant virus protein, the helper component-proteinase (HcPro) of Lettuce mosaic virus (LMV; genus Potyvirus), interferes with the 20S proteasome ribonuclease is reported here. LMV infection caused an aggregation of the 20S proteasome to high-molecular mass structures in vivo, and specific binding of HcPro to the proteasome was confirmed in vitro using two different approaches. HcPro inhibited the 20S endonuclease activity in vitro, while its proteolytic activities were unchanged or slightly stimulated. This ability of HcPro, a pathogenicity regulator of potyviruses, to interfere with some of the catalytic functions of the 20S proteasome suggests the existence of a novel type of defence and counter-defence interplay in the course of interaction between potyviruses and their hosts.


1995 ◽  
Vol 15 (5) ◽  
pp. 2763-2771 ◽  
Author(s):  
D C Masison ◽  
A Blanc ◽  
J C Ribas ◽  
K Carroll ◽  
N Sonenberg ◽  
...  

The major coat protein of the L-A double-stranded RNA virus of Saccharomyces cerevisiae covalently binds m7 GMP from 5' capped mRNAs in vitro. We show that this cap binding also occurs in vivo and that, while this activity is required for expression of viral information (killer toxin mRNA level and toxin production) in a wild-type strain, this requirement is suppressed by deletion of SKI1/XRN1/SEP1. We propose that the virus creates decapped cellular mRNAs to decoy the 5'-->3' exoribonuclease specific for cap- RNA encoded by XRN1. The SKI2 antiviral gene represses the copy numbers of the L-A and L-BC viruses and the 20S RNA replicon, apparently by specifically blocking translation of viral RNA. We show that SKI2, SKI3, and SKI8 inhibit translation of electroporated luciferase and beta-glucuronidase mRNAs in vivo, but only if they lack the 3' poly(A) structure. Thus, L-A decoys the SKI1/XRN1/SEP1 exonuclease directed at 5' uncapped ends, but translation of the L-A poly(A)- mRNA is repressed by Ski2,3,8p. The SKI2-SKI3-SKI8 system is more effective against cap+ poly(A)- mRNA, suggesting a (nonessential) role in blocking translation of fragmented cellular mRNAs.


2019 ◽  
Vol 19 (12) ◽  
pp. 950-960
Author(s):  
Soghra Farzipour ◽  
Seyed Jalal Hosseinimehr

Tumor-targeting peptides have been generally developed for the overexpression of tumor specific receptors in cancer cells. The use of specific radiolabeled peptide allows tumor visualization by single photon emission computed tomography (SPECT) and positron emission tomography (PET) tools. The high affinity and specific binding of radiolabeled peptide are focusing on tumoral receptors. The character of the peptide itself, in particular, its complex molecular structure and behaviors influence on its specific interaction with receptors which are overexpressed in tumor. This review summarizes various strategies which are applied for the expansion of radiolabeled peptides for tumor targeting based on in vitro and in vivo specific tumor data and then their data were compared to find any correlation between these experiments. With a careful look at previous studies, it can be found that in vitro unblock-block ratio was unable to correlate the tumor to muscle ratio and the success of radiolabeled peptide for in vivo tumor targeting. The introduction of modifiers’ approaches, nature of peptides, and type of chelators and co-ligands have mixed effect on the in vitro and in vivo specificity of radiolabeled peptides.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Ma ◽  
Jing Sun ◽  
Bo Li ◽  
Yang Feng ◽  
Yao Sun ◽  
...  

AbstractThe development of biomedical glues is an important, yet challenging task as seemingly mutually exclusive properties need to be combined in one material, i.e. strong adhesion and adaption to remodeling processes in healing tissue. Here, we report a biocompatible and biodegradable protein-based adhesive with high adhesion strengths. The maximum strength reaches 16.5 ± 2.2 MPa on hard substrates, which is comparable to that of commercial cyanoacrylate superglue and higher than other protein-based adhesives by at least one order of magnitude. Moreover, the strong adhesion on soft tissues qualifies the adhesive as biomedical glue outperforming some commercial products. Robust mechanical properties are realized without covalent bond formation during the adhesion process. A complex consisting of cationic supercharged polypeptides and anionic aromatic surfactants with lysine to surfactant molar ratio of 1:0.9 is driven by multiple supramolecular interactions enabling such strong adhesion. We demonstrate the glue’s robust performance in vitro and in vivo for cosmetic and hemostasis applications and accelerated wound healing by comparison to surgical wound closures.


Author(s):  
Thu Hang Lai ◽  
Magali Toussaint ◽  
Rodrigo Teodoro ◽  
Sladjana Dukić-Stefanović ◽  
Daniel Gündel ◽  
...  

Abstract Purpose The adenosine A2A receptor has emerged as a therapeutic target for multiple diseases, and thus the non-invasive imaging of the expression or occupancy of the A2A receptor has potential to contribute to diagnosis and drug development. We aimed at the development of a metabolically stable A2A receptor radiotracer and report herein the preclinical evaluation of [18F]FLUDA, a deuterated isotopologue of [18F]FESCH. Methods [18F]FLUDA was synthesized by a two-step one-pot approach and evaluated in vitro by autoradiographic studies as well as in vivo by metabolism and dynamic PET/MRI studies in mice and piglets under baseline and blocking conditions. A single-dose toxicity study was performed in rats. Results [18F]FLUDA was obtained with a radiochemical yield of 19% and molar activities of 72–180 GBq/μmol. Autoradiography proved A2A receptor–specific accumulation of [18F]FLUDA in the striatum of a mouse and pig brain. In vivo evaluation in mice revealed improved stability of [18F]FLUDA compared to that of [18F]FESCH, resulting in the absence of brain-penetrant radiometabolites. Furthermore, the radiometabolites detected in piglets are expected to have a low tendency for brain penetration. PET/MRI studies confirmed high specific binding of [18F]FLUDA towards striatal A2A receptor with a maximum specific-to-non-specific binding ratio in mice of 8.3. The toxicity study revealed no adverse effects of FLUDA up to 30 μg/kg, ~ 4000-fold the dose applied in human PET studies using [18F]FLUDA. Conclusions The new radiotracer [18F]FLUDA is suitable to detect the availability of the A2A receptor in the brain with high target specificity. It is regarded ready for human application.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Merricka C. Livingstone ◽  
Alexis A. Bitzer ◽  
Alish Giri ◽  
Kun Luo ◽  
Rajeshwer S. Sankhala ◽  
...  

AbstractPlasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA)n repeat region. We compared in vitro and in vivo activities of six CSP-specific mAbs derived from human recipients of a recombinant CSP vaccine RTS,S/AS01 (mAbs 317 and 311); an irradiated whole sporozoite vaccine PfSPZ (mAbs CIS43 and MGG4); or individuals exposed to malaria (mAbs 580 and 663). RTS,S mAb 317 that specifically binds the (NPNA)n epitope, had the highest affinity and it elicited the best sterile protection in mice. The most potent inhibitor of sporozoite invasion in vitro was mAb CIS43 which shows dual-specific binding to the junctional sequence and (NPNA)n. In vivo mouse protection was associated with the mAb reactivity to the NANPx6 peptide, the in vitro inhibition of sporozoite invasion activity, and kinetic parameters measured using intact mAbs or their Fab fragments. Buried surface area between mAb and its target epitope was also associated with in vivo protection. Association and disconnects between in vitro and in vivo readouts has important implications for the design and down-selection of the next generation of CSP based interventions.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 963
Author(s):  
Maria C. Holeva ◽  
Athanasios Sklavounos ◽  
Rajendran Rajeswaran ◽  
Mikhail M. Pooggin ◽  
Andreas E. Voloudakis

Cucumber mosaic virus (CMV) is a destructive plant virus with worldwide distribution and the broadest host range of any known plant virus, as well as a model plant virus for understanding plant–virus interactions. Since the discovery of RNA interference (RNAi) as a major antiviral defense, RNAi-based technologies have been developed for plant protection against viral diseases. In plants and animals, a key trigger of RNAi is double-stranded RNA (dsRNA) processed by Dicer and Dicer-like (DCL) family proteins in small interfering RNAs (siRNAs). In the present study, dsRNAs for coat protein (CP) and 2b genes of CMV were produced in vitro and in vivo and applied onto tobacco plants representing a systemic solanaceous host as well as on a local host plant Chenopodium quinoa. Both dsRNA treatments protected plants from local and systemic infection with CMV, but not against infection with unrelated viruses, confirming sequence specificity of antiviral RNAi. Antiviral RNAi was effective when dsRNAs were applied simultaneously with or four days prior to CMV inoculation, but not four days post inoculation. In vivo-produced dsRNAs were more effective than the in vitro-produced; in treatments with in vivo dsRNAs, dsRNA-CP was more effective than dsRNA-2b, while the effects were opposite with in vitro dsRNAs. Illumina sequencing of small RNAs from in vivo dsRNA-CP treated and non-treated tobacco plants revealed that interference with CMV infection in systemic leaves coincides with strongly reduced accumulation of virus-derived 21- and 22-nucleotide (nt) siRNAs, likely generated by tobacco DCL4 and DCL2, respectively. While the 21-nt class of viral siRNAs was predominant in non-treated plants, 21-nt and 22-nt classes accumulated at almost equal (but low) levels in dsRNA treated plants, suggesting that dsRNA treatment may boost DCL2 activity. Taken together, our findings confirm the efficacy of topical application of dsRNA for plant protection against viruses and shed more light on the mechanism of antiviral RNAi.


Leukemia ◽  
2021 ◽  
Author(s):  
Christos Georgiadis ◽  
Jane Rasaiyaah ◽  
Soragia Athina Gkazi ◽  
Roland Preece ◽  
Aniekan Etuk ◽  
...  

AbstractTargeting T cell malignancies using chimeric antigen receptor (CAR) T cells is hindered by ‘T v T’ fratricide against shared antigens such as CD3 and CD7. Base editing offers the possibility of seamless disruption of gene expression of problematic antigens through creation of stop codons or elimination of splice sites. We describe the generation of fratricide-resistant T cells by orderly removal of TCR/CD3 and CD7 ahead of lentiviral-mediated expression of CARs specific for CD3 or CD7. Molecular interrogation of base-edited cells confirmed elimination of chromosomal translocations detected in conventional Cas9 treated cells. Interestingly, 3CAR/7CAR co-culture resulted in ‘self-enrichment’ yielding populations 99.6% TCR−/CD3−/CD7−. 3CAR or 7CAR cells were able to exert specific cytotoxicity against leukaemia lines with defined CD3 and/or CD7 expression as well as primary T-ALL cells. Co-cultured 3CAR/7CAR cells exhibited highest cytotoxicity against CD3 + CD7 + T-ALL targets in vitro and an in vivo human:murine chimeric model. While APOBEC editors can reportedly exhibit guide-independent deamination of both DNA and RNA, we found no problematic ‘off-target’ activity or promiscuous base conversion affecting CAR antigen-specific binding regions, which may otherwise redirect T cell specificity. Combinational infusion of fratricide-resistant anti-T CAR T cells may enable enhanced molecular remission ahead of allo-HSCT for T cell malignancies.


2021 ◽  
Vol 22 (5) ◽  
pp. 2285
Author(s):  
Thu Hang Lai ◽  
Susann Schröder ◽  
Magali Toussaint ◽  
Sladjana Dukić-Stefanović ◽  
Mathias Kranz ◽  
...  

The adenosine A2A receptor (A2AR) represents a potential therapeutic target for neurodegenerative diseases. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor changes of receptor density and/or occupancy during the A2AR-tailored therapy, we designed a library of fluorinated analogs based on a recently published lead compound (PPY). Among those, the highly affine 4-fluorobenzyl derivate (PPY1; Ki(hA2AR) = 5.3 nM) and the 2-fluorobenzyl derivate (PPY2; Ki(hA2AR) = 2.1 nM) were chosen for 18F-labeling via an alcohol-enhanced copper-mediated procedure starting from the corresponding boronic acid pinacol ester precursors. Investigations of the metabolic stability of [18F]PPY1 and [18F]PPY2 in CD-1 mice by radio-HPLC analysis revealed parent fractions of more than 76% of total activity in the brain. Specific binding of [18F]PPY2 on mice brain slices was demonstrated by in vitro autoradiography. In vivo PET/magnetic resonance imaging (MRI) studies in CD-1 mice revealed a reasonable high initial brain uptake for both radiotracers, followed by a fast clearance.


Sign in / Sign up

Export Citation Format

Share Document