scholarly journals Function of NF-kappa B/Rel binding sites in the major histocompatibility complex class II invariant chain promoter is dependent on cell-specific binding of different NF-kappa B/Rel subunits.

1994 ◽  
Vol 14 (5) ◽  
pp. 2926-2935 ◽  
Author(s):  
A M Brown ◽  
M W Linhoff ◽  
B Stein ◽  
K L Wright ◽  
A S Baldwin ◽  
...  

The promoter of the human major histocompatibility complex class II-associated invariant-chain gene (Ii) contains two NF-kappa B/Rel binding sites located at -109 to -118 (Ii kappa B-1) and -163 to -172 (Ii kappa B-2) from the transcription start site. We report here that the differential function of each of these NF-kappa B/Rel sites in several distinct cell types depends on cell-specific binding of NF-kappa B/Rel transcription factors. Ii kappa B-1 is a positive regulatory element in B-cell lines and in the Ii-expressing T-cell line, H9, but acts as a negative regulatory element in myelomonocytic and glia cell lines. In vivo protein-DNA contacts are detectable at Ii kappa B-1 in cell lines in which this site is functional as either a positive or negative regulator. Electrophoretic mobility supershift assays determine that members of the NF-kappa B/Rel family of transcription factors can bind to this site in vitro and that DNA-binding complexes that contain p50, p52, p65, and cRel correlate with positive regulation whereas the presence of p50 correlates with negative regulation. Ii kappa B-2 is a site of positive regulation in B-cell lines and a site of negative regulation in H9 T cells, myelomonocytic, and glial cell lines. In vivo occupancy of this site is observed only in the H9 T-cell line. Again, in vitro supershift studies indicate that the presence of p50, p52, p65, and cRel correlates with positive function whereas the presence of only p50 and p52 correlates with negative function. This differential binding of specific NF-kappa B/Rel subunits is likely to mediate the disparate functions of these two NF-kappa B/Rel binding sites.

1995 ◽  
Vol 15 (3) ◽  
pp. 1405-1421 ◽  
Author(s):  
C C Adams ◽  
J L Workman

To investigate mechanisms by which multiple transcription factors access complex promoters and enhancers within cellular chromatin, we have analyzed the binding of disparate factors to nucleosome cores. We used a purified in vitro system to analyze binding of four activator proteins, two GAL4 derivatives, USF, and NF-kappa B (KBF1), to reconstituted nucleosome cores containing different combinations of binding sites. Here we show that binding of any two or all three of these factors to nucleosomal DNA is inherently cooperative. Thus, the binuclear Zn clusters of GAL4, the helix-loop-helix/basic domains of USF, and the rel domain of NF-kappa B all participated in cooperative nucleosome binding, illustrating that this effect is not restricted to a particular DNA-binding domain. Simultaneous binding by two factors increased the affinity of individual factors for nucleosomal DNA by up to 2 orders of magnitude. Importantly, cooperative binding resulted in efficient nucleosome binding by factors (USF and NF-kappa B) which independently possess little nucleosome-binding ability. The participation of GAL4 derivatives in cooperative nucleosome binding required only DNA-binding and dimerization domains, indicating that disruption of histone-DNA contacts by factor binding was responsible for the increased affinity of additional factors. Cooperative nucleosome binding required sequence-specific binding of all transcription factors, appeared to have spatial constraints, and was independent of the orientation of the binding sites on the nucleosome. These results indicate that cooperative nucleosome binding is a general mechanism that may play a significant role in loading complex enhancer and promoter elements with multiple diverse factors in chromatin and contribute to the generation of threshold responses and transcriptional synergy by multiple activator sites in vivo.


Development ◽  
1998 ◽  
Vol 125 (22) ◽  
pp. 4349-4358 ◽  
Author(s):  
J. Charite ◽  
W. de Graaff ◽  
D. Consten ◽  
M.J. Reijnen ◽  
J. Korving ◽  
...  

Studies of pattern formation in the vertebrate central nervous system indicate that anteroposterior positional information is generated in the embryo by signalling gradients of an as yet unknown nature. We searched for transcription factors that transduce this information to the Hox genes. Based on the assumption that the activity levels of such factors might vary with position along the anteroposterior axis, we devised an in vivo assay to detect responsiveness of cis-acting sequences to such differentially active factors. We used this assay to analyze a Hoxb8 regulatory element, and detected the most pronounced response in a short stretch of DNA containing a cluster of potential CDX binding sites. We show that differentially expressed DNA binding proteins are present in gastrulating embryos that bind to these sites in vitro, that cdx gene products are among these, and that binding site mutations that abolish binding of these proteins completely destroy the ability of the regulatory element to drive regionally restricted expression in the embryo. Finally, we show that ectopic expression of cdx gene products anteriorizes expression of reporter transgenes driven by this regulatory element, as well as that of the endogenous Hoxb8 gene, in a manner that is consistent with them being essential transducers of positional information. These data suggest that, in contrast to Drosophila Caudal, vertebrate cdx gene products transduce positional information directly to the Hox genes, acting through CDX binding sites in their enhancers. This may represent the ancestral mode of action of caudal homologues, which are involved in anteroposterior patterning in organisms with widely divergent body plans and modes of development.


1992 ◽  
Vol 12 (9) ◽  
pp. 4093-4103
Author(s):  
D Falb ◽  
T Maniatis

Expression of the Drosophila melanogaster Adh gene in adults requires a fat body-specific enhancer called the Adh adult enhancer (AAE). We have identified a protein in Drosophila nuclear extracts that binds specifically to a site within the AAE (adult enhancer factor 1 [AEF-1]). In addition, we have shown that AEF-1 binds specifically to two other Drosophila fat body enhancers. Base substitutions in the AEF-1 binding site that disrupt AEF-1 binding in vitro result in a significant increase in the level of Adh expression in vivo. Thus, the AEF-1 binding site is a negative regulatory element within the AAE. A cDNA encoding the AEF-1 protein was isolated and shown to act as a repressor of the AAE in cotransfection studies. The AEF-1 protein contains four zinc fingers and an alanine-rich sequence. The latter motif is found in other eukaryotic proteins known to be transcriptional repressors.


1989 ◽  
Vol 256 (2) ◽  
pp. G436-G441 ◽  
Author(s):  
C. Bianchi ◽  
G. Thibault ◽  
A. De Lean ◽  
J. Genest ◽  
M. Cantin

We have studied the localization and the characterization of atrial natriuretic factor (ANF) binding sites by radioautographic techniques. Quantitative in vitro radioautography with a computerized microdensitometer demonstrated the presence of high-affinity, low-capacity 125I-ANF-(99-126) binding sites (Kd, 48 pM; Bmax, 63 fmol/mg protein) mainly in the villi of 20-microns slide-mounted transverse sections of the rat jejunum. Competition curves showed 50% inhibitory concentrations of 55 and 1,560 pM for ANF-(99-126) and ANF-(103-123), respectively. In vivo electron microscope radioautography showed that 80% of the silver grains were localized on the lamina propria fibroblast-like cells, 18% on mature enterocytes, and 2% on capillaries. Bradykinin and adrenocorticotropin did not compete with ANF binding. These results demonstrate that ANF binding sites in the rat jejunum possess the pharmacological characteristics of functional ANF receptors encountered in other rat tissues, and ultrastructural radioautographs show their cellular distribution. Taken together, these results demonstrate the presence and the localization of specific binding sites for ANF in the jejunal villi of the rat small intestine.


Blood ◽  
1981 ◽  
Vol 57 (2) ◽  
pp. 218-228 ◽  
Author(s):  
H Huebers ◽  
W Bauer ◽  
E Huebers ◽  
E Csiba ◽  
C Finch

Abstract The behavior of rat transferrin has been investigated employing acrylamide gel electrophoresis and isoelectric focusing. In vitro trace labeling with iron chelates at 30 min was 93%-98% effective, whereas binding by simple ferric salts was reduced to 71%-76%. Complete and specific binding of 59FeSO4 by the iron binding sites of transferrin was demonstrated after in vitro or in vivo addition of ferrous ammonium sulfate in pH 2 saline up to the point of iron saturation. In vitro the radioriron transferrin complex in plasma was stable and its iron had a negligible exchange with other transferrin binding sites over several hours. The distribution of radioiron added in vitro or through absorption was shown to be random between the binding sites of slow and fast transferrin molecule. Iron distribution among body tissues was similar for mono- and diferric transferrin iron and was not affected by the site distribution of iron on the transferrin molecule. The only important aspect of transferrin iron binding was the more rapid tissue uptake of iron in the diferric form was compared to monoferric transferrin. Additional in vivo effects on internal iron exchange were produced by changes in the iron balance of the animal. In the iron loaded animal, monoferric transferrin injected into the plasma was rapidly loaded by iron from tissue and thereby converted to diferric transferrin. Injection of diferric transferrin in the iron deficient animal was associated with a rapid disappearance from circulation of the original complex and a subsequent appearance of monoferric transferrin as a result of iron returning from tissues. These observations support the concept that plasma iron behaves as a single pool except that diferric iron exchange occurs at a more rapid rate than dose monoferric iron exchange.


1990 ◽  
Vol 10 (3) ◽  
pp. 887-897 ◽  
Author(s):  
A R Buchman ◽  
R D Kornberg

ABFI (ARS-binding protein I) is a yeast protein that binds specific DNA sequences associated with several autonomously replicating sequences (ARSs). ABFI also binds sequences located in promoter regions of some yeast genes, including DED1, an essential gene of unknown function that is transcribed constitutively at a high level. ABFI was purified by specific binding to the DED1 upstream activating sequence (UAS) and was found to recognize related sequences at several other promoters, at an ARS (ARS1), and at a transcriptional silencer (HMR E). All ABFI-binding sites, regardless of origin, provided weak UAS function in vivo when examined in test plasmids. UAS function was abolished by point mutations that reduced ABFI binding in vitro. Analysis of the DED1 promoter showed that two ABFI-binding sites combine synergistically with an adjacent T-rich sequence to form a strong constitutive activator. The DED1 T-rich element acted synergistically with all other ABFI-binding sites and with binding sites for other multifunctional yeast activators. An examination of the properties of sequences surrounding ARS1 left open the possibility that ABFI enhances the initiation of DNA replication at ARS1 by transcriptional activation.


Blood ◽  
2003 ◽  
Vol 102 (10) ◽  
pp. 3737-3742 ◽  
Author(s):  
Peter Borchmann ◽  
John F. Treml ◽  
Hinrich Hansen ◽  
Claudia Gottstein ◽  
Roland Schnell ◽  
...  

AbstractCD30 is a promising target for antibody-based immunotherapy of Hodgkin lymphoma (HL) and anaplastic large cell lymphoma. To overcome the limitations from currently available murine anti-CD30 monoclonal antibodies (mAbs), a new fully human anti-CD30 antibody was generated. Binding properties were evaluated by recombinant CD30 capture enzyme-linked immunosorbent assay (ELISA) and fluorescence-activated cell-sorter (FACS) flow cytometry. Activity of this new mAb was assessed in vitro using growth inhibition and antibody-dependent cellular cytotoxicity (ADCC) assays on several cell lines. In vivo activity was determined in a solid as well as in a disseminated xenografted model of HL in severe combined immunodeficiency (SCID) mice. The mAb 5F11 showed specific binding to CD30 (cluster A). The ADCC assays indicated dose-dependent lysis of L540 cells when 5F11 was combined with human effector cells. Upon cross-linking in vitro, 5F11 inhibited the growth of CD30-expressing cell lines. In vivo, treatment with 5F11 induced a marked growth delay or even a complete regression of established xenografted HL in SCID mice. In the disseminated HL model, a high proportion of 5F11-treated mice experienced long-term survival. The new human anti-CD30 monoclonal antibody 5F11 shows promise as a means of CD30-targeted immunotherapy of malignant lymphomas. Based on these results, a clinical phase 1 study in patients with refractory CD30+ lymphoma has been initiated. (Blood. 2003;102:3737-3742)


2020 ◽  
Vol 48 (16) ◽  
pp. 8914-8926
Author(s):  
Erin E Cutts ◽  
J Barry Egan ◽  
Ian B Dodd ◽  
Keith E Shearwin

Abstract The Apl protein of bacteriophage 186 functions both as an excisionase and as a transcriptional regulator; binding to the phage attachment site (att), and also between the major early phage promoters (pR-pL). Like other recombination directionality factors (RDFs), Apl binding sites are direct repeats spaced one DNA helix turn apart. Here, we use in vitro binding studies with purified Apl and pR-pL DNA to show that Apl binds to multiple sites with high cooperativity, bends the DNA and spreads from specific binding sites into adjacent non-specific DNA; features that are shared with other RDFs. By analysing Apl's repression of pR and pL, and the effect of operator mutants in vivo with a simple mathematical model, we were able to extract estimates of binding energies for single specific and non-specific sites and for Apl cooperativity, revealing that Apl monomers bind to DNA with low sequence specificity but with strong cooperativity between immediate neighbours. This model fit was then independently validated with in vitro data. The model we employed here is a simple but powerful tool that enabled better understanding of the balance between binding affinity and cooperativity required for RDF function. A modelling approach such as this is broadly applicable to other systems.


1989 ◽  
Vol 261 (1) ◽  
pp. 167-173 ◽  
Author(s):  
M Lindén ◽  
B D Nelson ◽  
J F Leterrier

Purified mitochondria from rat brain contain microtubule-associated proteins (MAPs) bound to the outer membrane. Studies of binding in vitro performed with microtubules and with purified microtubule proteins showed that mitochondria preferentially interact with the high-molecular-mass MAPs (and not with Tau protein). Incubation of intact mitochondria with Taxol-stabilized microtubules resulted in the selective trapping of both MAPs 1 and 2 on mitochondria, indicating that an interaction between the two organelles occurred through a site on the arm-like projection of MAPs. Two MAP-binding sites were located on intact mitochondria. The lower-affinity MAP2-binding site (Kd = 2 x 10(-7) M) was preserved and enriched in the outer-membrane fraction, whereas the higher-affinity site (Kd = 1 x 10(-9) M) was destroyed after removing the outer membrane with digitonin. Detergent fractionation of mitochondrial outer membranes saturated with MAP2 bound in vitro showed that MAPs are associated with membrane fragments which contain the pore-forming protein (porin). MAP2 also partially prevents the solubilization of porin from outer membrane, indicating a MAP-induced change in the membrane environment of porin. These observations demonstrate the presence of specific MAP-binding sites on the outer membrane, suggesting an association between porin and the membrane domain involved in the cross-linkage between microtubules and mitochondria.


1995 ◽  
Vol 15 (9) ◽  
pp. 4971-4979 ◽  
Author(s):  
B Stein ◽  
M X Yang

Bone metabolism is regulated by a balance between bone resorption caused by osteoclasts and bone formation caused by osteoblasts. This balance is disturbed in postmenopausal women as a result of lower serum estrogen levels. Estrogen, which is used in hormone replacement therapy to prevent postmenopausal osteoporosis, downregulates expression of the interleukin 6 (IL-6) gene in osteoblasts and bone marrow stromal cells. IL-6 is directly involved in bone resorption by activating immature osteoclasts. We show here that NF-kappa B and C/EBP beta are important regulators of IL-6 gene expression in human osteoblasts. Importantly, the IL-6 promoter is inhibited by estrogen in the absence of a functional estrogen receptor (ER) binding site. This inhibition is mediated by the transcription factors NF-kappa B and C/EBP beta. Evidence is presented for a direct interaction between these two factors and ER. We characterized the protein sequence requirements for this association in vitro and in vivo. The physical and functional interaction depends in part on the DNA binding domain and region D of ER and on the Rel homology domain of NF-kappa B and the bZIP region of C/EBP beta. The cross-coupling between ER, NF-kappa B, and C/EBP beta also results in reduced activity of promoters with ER binding sites. We further show that the mechanism of IL-6 gene repression by estrogen is clearly different from that of activation of promoters with ER binding sites. Therefore, drugs that separate the transactivation and transrepression functions of ER will be very helpful for treatment of osteoporosis without causing undesirable side effects.


Sign in / Sign up

Export Citation Format

Share Document