scholarly journals The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits.

1996 ◽  
Vol 16 (12) ◽  
pp. 6707-6714 ◽  
Author(s):  
U S Varanasi ◽  
M Klis ◽  
P B Mikesell ◽  
R J Trumbly

The Cyc8 (Ssn6)-Tup1 corepressor complex is required for repression in several important regulatory systems in yeast cells, including glucose repression and mating type. Cyc8-Tup1 is recruited to target genes by interaction with diverse repressor proteins that bind directly to DNA. Since the complex has a large apparent molecular mass of 1,200 kDa on nondenaturing gels (F. E. Williams, U. Varanasi, and R. J. Trumbly, Mol. Cell. Biol. 11:3307-3316, 1991), we used a variety of approaches to determine its actual subunit composition. Immunoprecipitation of epitope-tagged complex and reconstitution of the complex from in vitro-translated proteins demonstrated that only the Cyc8 and Tup1 proteins were present in the complex. Hydrodynamic properties showed that these proteins have unusually large Stokes radii, low sedimentation coefficients, and high frictional ratios, all characteristic of asymmetry which partly accounts for the apparent high molecular weight. Calculation of native molecular weights from these properties indicated that the Cyc8-Tup1 complex is composed of one Cyc8 subunit and four Tup1 subunits. This composition was confirmed by reconstitution of the complex from Cyc8 and Tup1 expressed in vitro and analysis by one- and two-dimensional gel electrophoresis.

1999 ◽  
Vol 19 (12) ◽  
pp. 8461-8468 ◽  
Author(s):  
Yukio Mukai ◽  
Eri Matsuo ◽  
Sharon Y. Roth ◽  
Satoshi Harashima

ABSTRACT The Ssn6p-Tup1p corepressor complex is important to the regulation of several diverse genes in Saccharomyces cerevisiae and serves as a model for corepressor functions. To investigate the evolutionary conservation of these functions, sequences homologous to the S. cerevisiae TUP1 gene were cloned fromKluyveromyces lactis (TUP1) andSchizosaccharomyces pombe (tup11 +). Interestingly, while the K. lactis TUP1 gene complemented an S. cerevisiae tup1 null mutation, the S. pombe tup11 + gene did not, even when expressed under the control of the S. cerevisiae TUP1 promoter. However, anS. pombe Tup11p-LexA fusion protein repressed transcription of a corresponding reporter gene, indicating that this Tup1p homolog has intrinsic repressor activity. Moreover, a chimeric protein containing the amino-terminal Ssn6p-binding domain of S. cerevisiae Tup1p and 544 amino acids from the C-terminal region of S. pombe Tup11p complemented the S. cerevisiae tup1 mutation. The failure of native S. pombe Tup11p to complement loss of Tup1p functions in S. cerevisiaecorresponds to an inability to bind to S. cerevisiae Ssn6p in vitro. Disruption of tup11 + in combination with a disruption of tup12 +, anotherTUP1 homolog gene in S. pombe, causes a defect in glucose repression of fbp1 +, suggesting thatS. pombe Tup1p homologs function as repressors in S. pombe. Furthermore, Tup11p binds specifically to histones H3 and H4 in vitro, indicating that both the repression and histone binding functions of Tup1p-related proteins are conserved across species.


2020 ◽  
Vol 58 (1) ◽  
pp. 21-33
Author(s):  
Pingping Shen ◽  
Johnny Dang ◽  
Zerui Wang ◽  
Weiguanliu Zhang ◽  
Jue Yuan ◽  
...  

AbstractAlteration in cellular prion protein (PrPC) localization on the cell surface through mediation of the glycosylphosphatidylinositol (GPI) anchor has been reported to dramatically affect the formation and infectivity of its pathological isoform (PrPSc). A patient with Gerstmann-Sträussler-Scheinker (GSS) syndrome was previously found to have a nonsense heterozygous PrP-Q227X mutation resulting in an anchorless PrP. However, the allelic origin of this anchorless PrPSc and cellular trafficking of PrPQ227X remain to be determined. Here, we show that PrPSc in the brain of this GSS patient is mainly composed of the mutant but not wild-type PrP (PrPWt), suggesting pathological PrPQ227X is incapable of recruiting PrPWt in vivo. This mutant anchorless protein, however, is able to recruit PrPWt from humanized transgenic mouse brain but not from autopsied human brain homogenates to produce a protease-resistant PrPSc-like form in vitro by protein misfolding cyclic amplification (PMCA). To further investigate the characteristics of this mutation, constructs expressing human PrPQ227X or PrPWt were transfected into neuroblastoma cells (M17). Fractionation of the M17 cells demonstrated that most PrPWt is recovered in the cell lysate fraction, while most of the mutant PrPQ227X is recovered in the medium fraction, consistent with the results obtained by immunofluorescence microscopy. Two-dimensional gel-electrophoresis and Western blotting showed that cellular PrPQ227X spots clustered at molecular weights of 22–25 kDa with an isoelectric point (pI) of 3.5–5.5, whereas protein spots from the medium are at 18–26 kDa with a pI of 7–10. Our findings suggest that the role of GPI anchor in prion propagation between the anchorless mutant PrP and wild-type PrP relies on the cellular distribution of the protein.


2003 ◽  
Vol 23 (8) ◽  
pp. 2800-2820 ◽  
Author(s):  
Mark J. Swanson ◽  
Hongfang Qiu ◽  
Laarni Sumibcay ◽  
Anna Krueger ◽  
Soon-ja Kim ◽  
...  

ABSTRACT Transcriptional activators interact with multisubunit coactivators that modify chromatin structure or recruit the general transcriptional machinery to their target genes. Budding yeast cells respond to amino acid starvation by inducing an activator of amino acid biosynthetic genes, Gcn4p. We conducted a comprehensive analysis of viable mutants affecting known coactivator subunits from the Saccharomyces Genome Deletion Project for defects in activation by Gcn4p in vivo. The results confirm previous findings that Gcn4p requires SAGA, SWI/SNF, and SRB mediator (SRB/MED) and identify key nonessential subunits of these complexes required for activation. Among the numerous histone acetyltransferases examined, only that present in SAGA, Gcn5p, was required by Gcn4p. We also uncovered a dependence on CCR4-NOT, RSC, and the Paf1 complex. In vitro binding experiments suggest that the Gcn4p activation domain interacts specifically with CCR4-NOT and RSC in addition to SAGA, SWI/SNF, and SRB/MED. Chromatin immunoprecipitation experiments show that Mbf1p, SAGA, SWI/SNF, SRB/MED, RSC, CCR4-NOT, and the Paf1 complex all are recruited by Gcn4p to one of its target genes (ARG1) in vivo. We observed considerable differences in coactivator requirements among several Gcn4p-dependent promoters; thus, only a subset of the array of coactivators that can be recruited by Gcn4p is required at a given target gene in vivo.


1986 ◽  
Vol 102 (2) ◽  
pp. 393-402 ◽  
Author(s):  
H W Müller ◽  
M J Ignatius ◽  
D H Hangen ◽  
E M Shooter

Protein synthesis in the nerve sheath of injured as well as intact mature and developing sciatic nerves from rat and rabbit was investigated by incubating segments of nerve with [35S]methionine in vitro. The composition of labeled proteins under the different conditions of nerve growth was analyzed by two-dimensional gel electrophoresis and fluorography. The expression of six secreted proteins in rat sciatic nerve with the apparent molecular weights of 70,000 (70 kD), 54,000 (54 kD), 51,000 (51 kD), 39,000 (39 kD), 37,000 (37 kD), and 30,000 (30 kD) was of particular interest because of the correlation of their synthesis and secretion with aspects of nerve growth and regeneration. The synthesis of the 37-kD protein was significantly stimulated during both sciatic nerve development as well as regeneration but not in the intact mature nerve. The expression of this protein appears to be regulated by signal(s) from the axon but not the target. The 70-kD protein was exclusively synthesized in response to axotomy, thus confining its role to some aspect(s) of nerve repair. In contrast, the 54- and 51-kD proteins were expressed in the intact mature nerve sheath. Their synthesis and release was rapidly inhibited upon axotomy but returned to normal or higher levels towards the end of sciatic nerve regeneration, suggesting a role in the maintenance of the integrity of the mature (nongrowing) rat nerve. The 39- and 30-kD proteins were only transiently synthesized within the first week after axotomy. Two proteins with the apparent molecular masses of 70 and 37 kD were synthesized in denervated rabbit sciatic nerve. The similar molecular weights, net charges, and time-courses of induction suggest a homology between these proteins in rabbit and rat, indicating common molecular responses of peripheral nerve sheath cells to axon injury in both mammalian species.


2012 ◽  
Vol 35 (4) ◽  
pp. 285-295 ◽  
Author(s):  
Yimin Zhu ◽  
Xingyuan Xiao ◽  
Lairong Dong ◽  
Zhiming Liu

MicroRNAs are small noncoding RNA molecules that control expression of target genes. Our previous studies show that let-7a decreased in gastric carcinoma and that up-regulation of let-7a by gene augmentation inhibited gastric carcinoma cell growth bothin vitroandin vivo, whereas it remains largely unclear as to how let-7a affects tumor growth. In this study, proteins associated with the function of let-7a were detected by high throughout screening. The cell line of SGC-7901 stablely overexpressing let-7a was successfully established by gene cloning. Two-dimensional gel electrophoresis (2-DEy was used to separate the total proteins of SGC-7901/let-7a, SGC-7901/EV and SGC-7901, and PDQuest software was applied to analyze 2-DE images. Ten different protein spots were identified by MALDI-TOF-MS, and they may be the proteins associated with let-7a function. The overexpressed proteins included Antioxidant protein 2, Insulin–like growth factor binding protein 2, Protein disulfide isomerase A2, C-1-tetrahydrofolate synthase, Cyclin-dependent kinase inhibitor1 (CDKN1) and Rho–GTPase activating protein 4. The underexpressed proteins consisted of S-phase kinase-associated protein 2 (Spk2), Platelet membrane glycoprotein, Fibronectin and Cks1 protein. Furthermore, the different expression levels of the partial proteins (CDKN1, Spk2 and Fibronectin) were confirmed by western blot analysis. The data suggest that these differential proteins are involved in a novel let-7a signal pathway and these findings provide the basis to investigate the functional mechanisms of let-7a in gastric carcinoma.


2018 ◽  
Author(s):  
Benjamin T. Donovan ◽  
Anh Huynh ◽  
David A. Ball ◽  
Michael G. Poirier ◽  
Daniel R. Larson ◽  
...  

SummaryTranscription factors show rapid and reversible binding to chromatin in living cells, and transcription occurs in sporadic bursts, but how these phenomena are related is unknown. Using a combination of in vitro and in vivo single-molecule imaging approaches, we directly correlated binding of the transcription factor Gal4 with the transcriptional bursting kinetics of the Gal4 target genes GAL3 and GAL10 in living yeast cells. We find that Gal4 dwell times sets the transcriptional burst size. Gal4 dwell time depends on the affinity of the binding site and is reduced by orders of magnitude by nucleosomes. Using a novel imaging platform, we simultaneously tracked transcription factor binding and transcription at one locus, revealing the timing and correlation between Gal4 binding and transcription. Collectively, our data support a model where multiple polymerases initiate during a burst as long as the transcription factor is bound to DNA, and a burst terminates upon transcription factor dissociation.


1991 ◽  
Vol 11 (6) ◽  
pp. 3307-3316 ◽  
Author(s):  
F E Williams ◽  
U Varanasi ◽  
R J Trumbly

Mutations of yeast CYC8 or TUP1 genes greatly reduce the degree of glucose repression of many genes and affect other regulatory pathways, including mating type. The predicted CYC8 protein contains 10 copies of the 34-amino-acid tetratricopeptide repeat unit, and the predicted TUP1 protein has six repeated regions found in the beta subunit of heterotrimeric G proteins. The absence of DNA-binding motifs and the presence of these repeated domains suggest that the CYC8 and TUP1 proteins function via protein-protein interaction with transcriptional regulatory proteins. We raised polyclonal antibodies against TrpE-CYC8 and TrpE-TUP1 fusion proteins expressed in Escherichia coli. The CYC8 and TUP1 proteins from yeast cells were detected as closely spaced doublets on Western immunoblots of sodium dodecyl sulfate-polyacrylamide gels. Western blots of nondenaturing gels revealed that both proteins are associated in a high-molecular-weight complex with an apparent size of 1,200 kDa. In extracts from delta cyc8 strains, the size of the complex is reduced to 830 kDa. The CYC8 and TUP1 proteins were coprecipitated by either antiserum, further supporting the conclusion that they are associated with each other. The complex could be reconstituted in vitro by mixing extracts from strains with complementary mutations in the CYC8 and TUP1 genes.


Microbiology ◽  
2004 ◽  
Vol 150 (4) ◽  
pp. 929-934 ◽  
Author(s):  
Romeo Lascaris ◽  
Jan Piwowarski ◽  
Hans van der Spek ◽  
Joost Teixeira de Mattos ◽  
Les Grivell ◽  
...  

A link between control of respiration and glucose repression in yeast is reported. The HAP4 gene was overexpressed in a Δmig1 deletion background, generating a mutant in which respiratory function is stimulated and glucose repression is diminished. Although this combination does not result in derepression of genes encoding proteins involved in respiratory function, it nevertheless generates resistance against 2-deoxyglucose and hence contributes to more derepressed growth characteristics. Unexpectedly, overexpression of HAP4 in the Δmig1 deletion strain causes strong repression of several target genes of the Mig1p repressor. Repression is not restricted to glucose growth conditions and does not require the glucose repressors Mig2p or Hxk2p. It was observed that expression of the SUC2 gene is transiently repressed after glucose is added to respiratory-growing Δmig1 cells. Additional overexpression of HAP4 prevents release from this novel repressed state. The data presented show that respiratory function controls transcription of genes required for the metabolism of alternative sugars. This respiratory feedback control is suggested to regulate the feed into glycolysis in derepressed conditions.


2006 ◽  
Vol 27 (3) ◽  
pp. 1069-1082 ◽  
Author(s):  
Fredrik Fagerström-Billai ◽  
Mikaël Durand-Dubief ◽  
Karl Ekwall ◽  
Anthony P. H. Wright

ABSTRACT The Saccharomyces cerevisiae Ssn6 and Tup1 proteins form a corepressor complex that is recruited to target genes by DNA-bound repressor proteins. Repression occurs via several mechanisms, including interaction with hypoacetylated N termini of histones, recruitment of histone deacetylases (HDACs), and interactions with the RNA polymerase II holoenzyme. The distantly related fission yeast, Schizosaccharomyces pombe, has two partially redundant Tup1-like proteins that are dispensable during normal growth. In contrast, we show that Ssn6 is an essential protein in S. pombe, suggesting a function that is independent of Tup11 and Tup12. Consistently, the group of genes that requires Ssn6 for their regulation overlaps but is distinct from the group of genes that depend on Tup11 or Tup12. Global chip-on-chip analysis shows that Ssn6 is almost invariably found in the same genomic locations as Tup11 and/or Tup12. All three corepressor subunits are generally bound to genes that are selectively regulated by Ssn6 or Tup11/12, and thus, the subunit specificity is probably manifested in the context of a corepressor complex containing all three subunits. The corepressor binds to both the intergenic and coding regions of genes, but differential localization of the corepressor within genes does not appear to account for the selective dependence of target genes on the Ssn6 or Tup11/12 subunits. Ssn6, Tup11, and Tup12 are preferentially found at genomic locations at which histones are deacetylated, primarily by the Clr6 class I HDAC. Clr6 is also important for the repression of corepressor target genes. Interestingly, a subset of corepressor target genes, including direct target genes affected by Ssn6 overexpression, is associated with the function of class II (Clr3) and III (Hst4 and Sir2) HDACs.


1991 ◽  
Vol 11 (6) ◽  
pp. 3307-3316 ◽  
Author(s):  
F E Williams ◽  
U Varanasi ◽  
R J Trumbly

Mutations of yeast CYC8 or TUP1 genes greatly reduce the degree of glucose repression of many genes and affect other regulatory pathways, including mating type. The predicted CYC8 protein contains 10 copies of the 34-amino-acid tetratricopeptide repeat unit, and the predicted TUP1 protein has six repeated regions found in the beta subunit of heterotrimeric G proteins. The absence of DNA-binding motifs and the presence of these repeated domains suggest that the CYC8 and TUP1 proteins function via protein-protein interaction with transcriptional regulatory proteins. We raised polyclonal antibodies against TrpE-CYC8 and TrpE-TUP1 fusion proteins expressed in Escherichia coli. The CYC8 and TUP1 proteins from yeast cells were detected as closely spaced doublets on Western immunoblots of sodium dodecyl sulfate-polyacrylamide gels. Western blots of nondenaturing gels revealed that both proteins are associated in a high-molecular-weight complex with an apparent size of 1,200 kDa. In extracts from delta cyc8 strains, the size of the complex is reduced to 830 kDa. The CYC8 and TUP1 proteins were coprecipitated by either antiserum, further supporting the conclusion that they are associated with each other. The complex could be reconstituted in vitro by mixing extracts from strains with complementary mutations in the CYC8 and TUP1 genes.


Sign in / Sign up

Export Citation Format

Share Document