scholarly journals Investigation and Identification of let-7a Related Functional Proteins in Gastric Carcinoma by Proteomics

2012 ◽  
Vol 35 (4) ◽  
pp. 285-295 ◽  
Author(s):  
Yimin Zhu ◽  
Xingyuan Xiao ◽  
Lairong Dong ◽  
Zhiming Liu

MicroRNAs are small noncoding RNA molecules that control expression of target genes. Our previous studies show that let-7a decreased in gastric carcinoma and that up-regulation of let-7a by gene augmentation inhibited gastric carcinoma cell growth bothin vitroandin vivo, whereas it remains largely unclear as to how let-7a affects tumor growth. In this study, proteins associated with the function of let-7a were detected by high throughout screening. The cell line of SGC-7901 stablely overexpressing let-7a was successfully established by gene cloning. Two-dimensional gel electrophoresis (2-DEy was used to separate the total proteins of SGC-7901/let-7a, SGC-7901/EV and SGC-7901, and PDQuest software was applied to analyze 2-DE images. Ten different protein spots were identified by MALDI-TOF-MS, and they may be the proteins associated with let-7a function. The overexpressed proteins included Antioxidant protein 2, Insulin–like growth factor binding protein 2, Protein disulfide isomerase A2, C-1-tetrahydrofolate synthase, Cyclin-dependent kinase inhibitor1 (CDKN1) and Rho–GTPase activating protein 4. The underexpressed proteins consisted of S-phase kinase-associated protein 2 (Spk2), Platelet membrane glycoprotein, Fibronectin and Cks1 protein. Furthermore, the different expression levels of the partial proteins (CDKN1, Spk2 and Fibronectin) were confirmed by western blot analysis. The data suggest that these differential proteins are involved in a novel let-7a signal pathway and these findings provide the basis to investigate the functional mechanisms of let-7a in gastric carcinoma.

Author(s):  
Erica Hennessy ◽  
Lorraine O'Driscoll

MicroRNAs (miRNAs) are a family of endogenous small noncoding RNA molecules, of 19–28 nucleotides in length. In humans, up to 3% of all genes are estimated to encode these evolutionarily conserved sequences. miRNAs are thought to control expression of thousands of target mRNAs. Mammalian miRNAs generally negatively regulate gene expression by repressing translation, possibly through effects on mRNA stability and compartmentalisation, and/or the translation process itself. An extensive range of in silico and experimental techniques have been applied to our understanding of the occurrence and functional relevance of such sequences, and antisense technologies have been successfully used to control miRNA expression in vitro and in vivo. Interestingly, miRNAs have been identified in both normal and pathological conditions, including differentiation and development, metabolism, proliferation, cell death, viral infection and cancer. Of specific relevance and excitement to the area of diabetes research, miRNA regulation has been implicated in insulin secretion from pancreatic β-cells, diabetic heart conditions and nephropathy. Further analyses of miRNAs in vitro and in vivo will, undoubtedly, enable us determine their potential to be exploited as therapeutic targets in diabetes.


2019 ◽  
Vol 101 (6) ◽  
pp. 1167-1178 ◽  
Author(s):  
Sarah Bjorkman ◽  
Hugh S Taylor

AbstractMicroRNAs (miRNAs), a class of small noncoding RNA molecules, have been recognized as key post-transcriptional regulators associated with a multitude of human diseases. Global expression profiling studies have uncovered hundreds of miRNAs that are dysregulated in several diseases, and yielded many candidate biomarkers. This review will focus on miRNAs in endometriosis, a common chronic disease affecting nearly 10% of reproductive-aged women, which can cause pelvic pain, infertility, and a myriad of other symptoms. Endometriosis has delayed time to diagnosis when compared to other chronic diseases, as there is no current accurate, easily accessible, and noninvasive tool for diagnosis. Specific miRNAs have been identified as potential biomarkers for this disease in multiple studies. These and other miRNAs have been linked to target genes and functional pathways in disease-specific pathophysiology. Highlighting investigations into the roles of tissue and circulating miRNAs in endometriosis, published through June 2018, this review summarizes new connections between miRNA expression and the pathophysiology of endometriosis, including impacts on fertility. Future applications of miRNA biomarkers for precision medicine in diagnosing and managing endometriosis treatment are also discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jian Wang ◽  
Yong Du ◽  
Xiaoming Liu ◽  
William C. Cho ◽  
Yinxue Yang

MicroRNAs (miRNAs) are a class of small, noncoding RNA molecules capable of regulating gene expression translationally and/or transcriptionally. A large number of evidence have demonstrated that miRNAs have a functional role in both physiological and pathological processes by regulating the expression of their target genes. Recently, the functionalities of miRNAs in the initiation, progression, angiogenesis, metastasis, and chemoresistance of tumors have gained increasing attentions. Particularly, the alteration of miRNA profiles has been correlated with the transformation and metastasis of various cancers, including colon cancer. This paper reports the latest findings on miRNAs involved in different signaling networks leading to colon cancer metastasis, mainly focusing on miRNA profiling and their roles in PTEN/PI3K, EGFR, TGFβ, and p53 signaling pathways of metastatic colon cancer. The potential of miRNAs used as biomarkers in the diagnosis, prognosis, and therapeutic targets in colon cancer is also discussed.


Author(s):  
Donglan Huang ◽  
Ke Zhang ◽  
Wenying Zheng ◽  
Ruixin Zhang ◽  
Jiale Chen ◽  
...  

Abstract Background Although thousands of long noncoding RNAs (lncRNAs) have been annotated, only a few lncRNAs have been characterized functionally. In this study, we aimed to identify novel lncRNAs involved in the progression of gastric carcinoma (GC) and explore their regulatory mechanisms and clinical significance in GC. Methods A lncRNA expression microarray was used to identify differential lncRNA expression profiles between paired GCs and adjacent normal mucosal tissues. Using the above method, the lncRNA SGO1-AS1 was selected for further study. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH) were performed to detect SGO1-AS1 expression in GC tissues. Gain-of-function and loss-of-function analyses were performed to investigate the functions of SGO1-AS1 and its upstream and downstream regulatory mechanisms in vitro and in vivo. Results SGO1-AS1 was downregulated in gastric carcinoma tissues compared to adjacent normal tissues, and its downregulation was positively correlated with advanced clinical stage, metastasis status and poor patient prognosis. The functional experiments revealed that SGO1-AS1 inhibited GC cell invasion and metastasis in vitro and in vivo. Mechanistically, SGO1-AS1 facilitated TGFB1/2 mRNA decay by competitively binding the PTBP1 protein, resulting in reduced TGFβ production and, thus, preventing the epithelial-to-mesenchymal transition (EMT) and metastasis. In addition, in turn, TGFβ inhibited SGO1-AS1 transcription by inducing ZEB1. Thus, SGO1-AS1 and TGFβ form a double-negative feedback loop via ZEB1 to regulate the EMT and metastasis. Conclusions SGO1-AS1 functions as an endogenous inhibitor of the TGFβ pathway and suppresses gastric carcinoma metastasis, indicating a novel potential target for GC treatment.


2021 ◽  
Vol 20 ◽  
pp. 153473542110453
Author(s):  
Huanrong Ma ◽  
Jingjing Wu ◽  
Minyu Zhou ◽  
Jianhua Wu ◽  
Zhenzhen Wu ◽  
...  

Treatment for advanced gastric cancer is challenging. Epidermal growth factor receptor (EGFR) contributes to the proliferation and development of gastric cancer (GC), and its overexpression is associated with unfavorable prognosis in GC. Cetuximab, a monoclonal antibody targeting EGFR, failed to improve the overall survival of gastric cancer patients indicated in phase III randomized trials. Glutamine is a vital nutrient for tumor growth and its metabolism contributes to therapeutic resistance, making glutamine uptake an attractive target for cancer treatment. The aim of the present study was to investigate whether intervention of glutamine uptake could improve the effect of cetuximab on GC. The results of MTT assay showed that by glutamine deprivation or inhibition of glutamine uptake, the viability of gastric carcinoma cells was inhibited more severely than that of human immortal gastric mucosa epithelial cells (GES-1). The expression of the key glutamine transporter alanine-serine-cysteine (ASC) transporter 2 (ASCT2; SLC1A5) was significantly higher in gastric carcinoma tissues and various gastric carcinoma cell lines than in normal gastric tissues and cells, as shown by immunohistochemistry and western blotting, while silencing ASCT2 significantly inhibited the viability and proliferation of gastric carcinoma cells. Consistent with previous studies, it was shown herein by MTT and EdU assays that cetuximab had a weak inhibitory effect on the cell viability of gastric carcinoma cells. However, inhibiting glutamine uptake by blockade of ASCT2 with l-γ-glutamyl- p-nitroanilide (GPNA) significantly enhanced the inhibitory effect of cetuximab on suppressing the proliferation of gastric cancer both in vitro and in vivo. Moreover, combining cetuximab and GPNA induced cell apoptosis considerably in gastric carcinoma cells, as shown by flow cytometry, and had a higher depressing effect on gastric cancer proliferation both in vitro and in vivo, as compared to either treatment alone. The present study suggested that inhibition of glutamine uptake may be a promising strategy for improving the inhibitory efficacy of cetuximab on advanced gastric cancer.


1988 ◽  
Vol 8 (8) ◽  
pp. 3510-3517
Author(s):  
S Giordano ◽  
M F Di Renzo ◽  
R Ferracini ◽  
L Chiadò-Piat ◽  
P M Comoglio

A protein with an Mr of 145,000 (p145) was detected by antibodies to phosphotyrosine by Western blot (immunoblot) analysis. This protein was phosphorylated on tyrosine in a gastric carcinoma cell line. In cells that were metabolically labeled with 32Pi, this protein was phosphorylated on tyrosine and serine. p145 is a cysteine-rich transmembrane glycoprotein. The extracellular domain could be labeled by 125I under nonpermeating conditions and was cleaved by mild trypsin treatment of intact cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions revealed a shift of p145 mobility to an apparent Mr of 190,000. After immunoprecipitation with phosphotyrosine antibodies, p145 displayed a strong associated protein kinase activity in vitro, becoming phosphorylated on tyrosine. There was no immunological cross-reaction between p145 and known tyrosine kinases. Both in vivo and in vitro tyrosine phosphorylations were unaffected by the addition of known growth factors. However, p145 was rapidly dephosphorylated in vivo when cells were exposed to low pH, a condition that is known to dissociate ligands from their receptors. These data suggest that p145 is associated with a protein tyrosine kinase activity which, in the tumor cell line studied, is activated by an as yet unidentified factor.


1988 ◽  
Vol 8 (8) ◽  
pp. 3510-3517 ◽  
Author(s):  
S Giordano ◽  
M F Di Renzo ◽  
R Ferracini ◽  
L Chiadò-Piat ◽  
P M Comoglio

A protein with an Mr of 145,000 (p145) was detected by antibodies to phosphotyrosine by Western blot (immunoblot) analysis. This protein was phosphorylated on tyrosine in a gastric carcinoma cell line. In cells that were metabolically labeled with 32Pi, this protein was phosphorylated on tyrosine and serine. p145 is a cysteine-rich transmembrane glycoprotein. The extracellular domain could be labeled by 125I under nonpermeating conditions and was cleaved by mild trypsin treatment of intact cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions revealed a shift of p145 mobility to an apparent Mr of 190,000. After immunoprecipitation with phosphotyrosine antibodies, p145 displayed a strong associated protein kinase activity in vitro, becoming phosphorylated on tyrosine. There was no immunological cross-reaction between p145 and known tyrosine kinases. Both in vivo and in vitro tyrosine phosphorylations were unaffected by the addition of known growth factors. However, p145 was rapidly dephosphorylated in vivo when cells were exposed to low pH, a condition that is known to dissociate ligands from their receptors. These data suggest that p145 is associated with a protein tyrosine kinase activity which, in the tumor cell line studied, is activated by an as yet unidentified factor.


2021 ◽  
Vol 46 (2) ◽  
pp. 162-172
Author(s):  
Jing Li ◽  
Xing Fan ◽  
Qian Wang ◽  
Youlan Gong ◽  
Li Guo

<b><i>Background/Aims:</i></b> This study was designed to examine the role of long noncoding RNA PRNCR1 in cisplatin-induced acute kidney injury (AKI) in vitro and in vivo. <b><i>Methods:</i></b> The expression levels of PRNCR1 and miR-182-5p in cisplatin-induced AKI mice were examined. HK-2 cells were treated with cisplatin to induce cell damage. Then, the effects of PRNCR1 and miR-182-5p on cisplatin-stimulated HK-2 cell viability and apoptosis were detected by the CCK-8 and annexin V-FITC/PI method. Target genes of PRNCR1 and miR-182-5p were analyzed by bioinformatics analysis and luciferase. <b><i>Results:</i></b> The expression level of PRNCR1 was significantly reduced in cisplatin-induced AKI mice. In addition, overexpression of PRNCR1 attenuated the damage of cisplatin to HK-2. The expression level of miR-182-5p was significantly raised in cisplatin-induced AKI mice. MiR-182-5p was negatively regulated by PRNCR1 and leaded to an upregulation of EZH1 expression. Overexpression of PRNCR1 attenuated cisplatin-induced apoptosis by downregulating the miR-182-5p/EZH1 axis. <b><i>Conclusion:</i></b> LncPRNCR1 reduced the apoptosis of renal epithelial cells induced by cisplatin by modulating miR-182-5p/EZH1.


2019 ◽  
Vol 3 (24) ◽  
pp. 4252-4263
Author(s):  
Sina Al-Kershi ◽  
Raj Bhayadia ◽  
Michelle Ng ◽  
Lonneke Verboon ◽  
Stephan Emmrich ◽  
...  

Abstract HOX genes are highly conserved, and their precisely controlled expression is crucial for normal hematopoiesis. Accordingly, deregulation of HOX genes can cause leukemia. However, despite of intensive research on the coding HOX genes, the role of the numerous long noncoding RNAs (lncRNAs) within the HOX clusters during hematopoiesis and their contribution to leukemogenesis are incompletely understood. Here, we show that the lncRNA HOXA10-AS, located antisense to HOXA10 and mir-196b in the HOXA cluster, is highly expressed in hematopoietic stem cells (HSCs) as well as in KMT2A-rearranged and NPM1 mutated acute myeloid leukemias (AMLs). Using short hairpin RNA– and locked nucleic acid-conjugated chimeric antisense oligonucleotide (LNA-GapmeR)–mediated HOXA10-AS-knockdown and CRISPR/Cas9-mediated excision in vitro, we demonstrate that HOXA10-AS acts as an oncogene in KMT2A-rearranged AML. Moreover, HOXA10-AS knockdown severely impairs the leukemic growth of KMT2A-rearranged patient-derived xenografts in vivo, while high HOXA10-AS expression can serve as a marker of poor prognosis in AML patients. Lentiviral expression of HOXA10-AS blocks normal monocytic differentiation of human CD34+ hematopoietic stem and progenitor cells. Mechanistically, we show that HOXA10-AS localizes in the cytoplasm and acts in trans to induce NF-κB target genes. In total, our data imply that the normally HSC-specific HOXA10-AS is an oncogenic lncRNA in KMT2A-r AML. Thus, it may also represent a potential therapeutic target in KMT2A-rearranged AML.


Sign in / Sign up

Export Citation Format

Share Document