scholarly journals Hepatocyte nuclear factor 3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues.

1997 ◽  
Vol 17 (3) ◽  
pp. 1626-1641 ◽  
Author(s):  
H Ye ◽  
T F Kelly ◽  
U Samadani ◽  
L Lim ◽  
S Rubio ◽  
...  

The hepatocyte nuclear factor 3alpha (HNF-3alpha) and 3beta proteins have homology in the winged helix/fork head DNA binding domain and regulate cell-specific transcription in hepatocytes and in respiratory and intestinal epithelia. In this study, we describe two novel isoforms of the winged helix transcription factor family, HNF-3/fork head homolog 11A (HFH-11A) and HFH-11B, isolated from the human colon carcinoma HT-29 cell line. We show that these isoforms arise via differential splicing and are expressed in a number of epithelial cell lines derived from tumors (HT-29, Caco-2, HepG2, HeLa, A549, and H441). We demonstrate that differentiation of Caco-2 cells toward the enterocyte lineage results in decreased HFH-11 expression and reciprocal increases in HNF-3alpha and HNF-3beta mRNA levels. In situ hybridization of 16 day postcoitus mouse embryos demonstrates that HFH-11 expression is found in the mesenchymal and epithelial cells of the liver, lung, intestine, renal cortex, and urinary tract. Although HFH-11 exhibits a wide cellular expression pattern in the embryo, its adult expression pattern is restricted to epithelial cells of Lieberkühn's crypts of the intestine, the spermatocytes and spermatids of the testis, and the thymus and colon. HFH-11 expression is absent in adult hepatocytes, but its expression is reactivated in proliferating hepatocytes at 4, 24, and 48 h after partial hepatectomy. Consistent with these findings, we demonstrate that HFH-11 mRNA levels are stimulated by intratracheal administration of keratinocyte growth factor in adult lung and its expression in an adult endothelial cell line is reactivated in response to oxidative stress. These experiments show that the HFH-11 transcription factor is expressed in embryonic mesenchymal and epithelial cells and its expression is reactivated in these adult cell types by proliferative signals or oxidative stress.

2013 ◽  
Vol 305 (1) ◽  
pp. F100-F110 ◽  
Author(s):  
Yun-Hee Choi ◽  
Brian T. McNally ◽  
Peter Igarashi

Hepatocyte nuclear factor-1β (HNF-1β) is an epithelial tissue-specific transcription factor that regulates gene expression in the kidney, liver, pancreas, intestine, and other organs. Mutations of HNF-1β in humans produce renal cysts and congenital kidney anomalies. Here, we identify the LIM-domain protein zyxin as a novel binding partner of HNF-1β in renal epithelial cells. Zyxin shuttles to the nucleus where it colocalizes with HNF-1β. Immunoprecipitation of zyxin in leptomycin B-treated cells results in coprecipitation of HNF-1β. The protein interaction requires the second LIM domain of zyxin and two distinct domains of HNF-1β. Overexpression of zyxin stimulates the transcriptional activity of HNF-1β, whereas small interfering RNA silencing of zyxin inhibits HNF-1β-dependent transcription. Epidermal growth factor (EGF) induces translocation of zyxin into the nucleus and stimulates HNF-1β-dependent promoter activity. The EGF-mediated nuclear translocation of zyxin requires activation of Akt. Expression of dominant-negative mutant HNF-1β, knockdown of zyxin, or inhibition of Akt inhibits EGF-stimulated cell migration. These findings reveal a novel pathway by which extracellular signals are transmitted to the nucleus to regulate the activity of a transcription factor that is essential for renal epithelial differentiation.


Genomics ◽  
1995 ◽  
Vol 25 (2) ◽  
pp. 388-393 ◽  
Author(s):  
Karen B. Avraham ◽  
Colin Fletcher ◽  
David G. Overdier ◽  
Derek E. Clevidence ◽  
Eseng Lai ◽  
...  

2008 ◽  
Vol 28 (14) ◽  
pp. 4588-4597 ◽  
Author(s):  
Anaïs Perilhou ◽  
Cécile Tourrel-Cuzin ◽  
Pili Zhang ◽  
Ilham Kharroubi ◽  
Haiyan Wang ◽  
...  

ABSTRACT Pancreatic islet beta cell differentiation and function are dependent upon a group of transcription factors that maintain the expression of key genes and suppress others. Knockout mice with the heterozygous deletion of the gene for chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) or the complete disruption of the gene for hepatocyte nuclear factor 4α (HNF4α) in pancreatic beta cells have similar insulin secretion defects, leading us to hypothesize that there is transcriptional cross talk between these two nuclear receptors. Here, we demonstrate specific HNF4α activation of a reporter plasmid containing the COUP-TFII gene promoter region in transfected pancreatic beta cells. The stable association of the endogenous HNF4α with a region of the COUP-TFII gene promoter that contains a direct repeat 1 (DR-1) binding site was revealed by chromatin immunoprecipitation. Mutation experiments showed that this DR-1 site is essential for HNF4α transactivation of COUP-TFII. The dominant negative suppression of HNF4α function decreased endogenous COUP-TFII expression, and the specific inactivation of COUP-TFII by small interfering RNA caused HNF4α mRNA levels in 832/13 INS-1 cells to decrease. This positive regulation of HNF4α by COUP-TFII was confirmed by the adenovirus-mediated overexpression of human COUP-TFII (hCOUP-TFII), which increased HNF4α mRNA levels in 832/13 INS-1 cells and in mouse pancreatic islets. Finally, hCOUP-TFII overexpression showed that there is direct COUP-TFII autorepression, as COUP-TFII occupies the proximal DR-1 binding site of its own gene in vivo. Therefore, COUP-TFII may contribute to the control of insulin secretion through the complex HNF4α/maturity-onset diabetes of the young 1 (MODY1) transcription factor network operating in beta cells.


2005 ◽  
Vol 83 (2) ◽  
pp. 221-229 ◽  
Author(s):  
Birgit Kindermann ◽  
Frank Döring ◽  
Jan Budczies ◽  
Hannelore Daniel

Zinc is an essential trace element that serves as a structural constituent of a large number of transcription factors, which explains its pivotal role in the control of gene expression. Previous studies investigating the effect of zinc deficiency and zinc supplementation on gene expression in the human adenocarcinoma cell line HT-29 led to the identification of a considerable number of genes responding to alterations in cellular zinc status with changes in steady state mRNA levels. For 9 of 20 genes from these previous screenings that were studied in more detail, mRNA steady state levels responded to both high and low media zinc concentrations. As they are primarily zinc-dependent, we assessed whether these genes are controlled by the zinc-finger metal transcription factor MTF-1. To test this hypothesis we generated a doxycyline-inducible Tet-On HT-29 cell line overexpressing MTF-1. Using this conditional expression system, we present evidence that Kruppel-like factor 4 (klf4), hepatitis A virus cellular receptor 1 (hhav), and complement factor B (cfbp) are 3 potential new target genes of MTF-1. To support this, we used in silico analysis to screen for metal-responsive elements (MREs) within promotors of zinc-sensitive genes. We conclude that zinc responsiveness of klf4, hhav, and cfbp in HT-29 cells is mediated at least in part by MTF-1.Key words: zinc-sensitive genes, target genes, MTF-1, HT-29 cells, metal-response element.


1995 ◽  
Vol 269 (2) ◽  
pp. L241-L247 ◽  
Author(s):  
F. Li ◽  
E. Rosenberg ◽  
C. I. Smith ◽  
K. Notarfrancesco ◽  
S. R. Reisher ◽  
...  

C/EBP alpha is a transcription factor which can stimulate expression of genes in lipid-metabolizing epithelial cells. We have detected an increase in mRNA for C/EBP alpha in lungs of fetal rats between days 18 and 20 of gestation, correlating with events occurring during the maturation of the surfactant system, such as an increase in the amount of surfactant protein A mRNA. We have found that C/EBP alpha mRNA levels are substantially enriched in type II alveolar epithelial cells purified from adult lung and that the C/EBP alpha protein is present in type II cell nuclei. When the type II cells are removed from the lung and purified, the protein is rapidly lost. However, both surfactant protein gene expression and C/EBP alpha reappear when cells are plated on Matrigel. Levels of C/EBP alpha mRNA from purified cells decline much more slowly than the protein and are still detectable 48 h after cells have been plated on standard tissue culture plastic. We have also detected the C/EBP alpha protein in nuclear extracts of NCI-H441, a lung-derived cell line that expresses surfactant proteins A and B, but not in A549, a lung-derived cell line which does not express the surfactant proteins. Our data suggest that C/EBP alpha is involved in the development and maintenance of the surfactant system in lung type II cells.


Diabetes ◽  
1998 ◽  
Vol 47 (8) ◽  
pp. 1231-1235 ◽  
Author(s):  
K. Yamagata ◽  
Q. Yang ◽  
K. Yamamoto ◽  
H. Iwahashi ◽  
J. Miyagawa ◽  
...  

Author(s):  
JaeSang Ko ◽  
Ji-Young Kim ◽  
Min Kyung Chae ◽  
Eun Jig Lee ◽  
Jin Sook Yoon

We examined endoplasmic reticulum (ER) stress-related gene expression in orbital tissues from patients with Graves’ orbitopathy (GO) and the effects of silencing protein kinase RNA-like endoplasmic reticulum kinase (PERK) in primary orbital fibroblast cultures to demonstrate the therapeutic potential of PERK-modulating agents in GO management. The expression of ER stress related genes in orbital tissue harvested from individuals with or without GO was studied using real-time polymerase chain reaction. The role of PERK in GO pathogenesis was examined through small-interfering RNA (siRNA)-mediated silencing in cultured primary orbital fibroblasts. Intracellular reactive oxygen species (ROS) levels induced in response to cigarette smoke extract (CSE) or hydrogen peroxide were measured using 5-(and 6)-carboxy-20,70-dichlorodihydrofluorescein diacetate staining and flow cytometry. Cells were stained with Oil Red O, and adipogenesis-related transcription factor expression was evaluated through western blotting after adipogenic differentiation. PERK, activating transcription factor 4 (ATF4), and CCAAT-enhancer-binding protein (C/EBP)-homologous protein(CHOP)mRNA levels were significantly higher in GO orbital tissues than in non-GO orbital tissues. PERK silencing inhibited CSE- or hydrogen peroxide-induced ROS generation. After adipogenic differentiation, GO orbital fibroblasts revealed decreased lipid droplets and downregulation of C/EBPα, C/EBPβ, and peroxisome proliferator-activator gamma (PPARγ) in PERK siRNA-transfected cells. The orbital tissues of patients with GO were exposed to chronic ER stress and subsequently exhibited enhanced unfolded protein response (especially through the PERK pathway). PERK silencing reduced oxidative stress and adipogenesis in GO orbital fibroblasts in vitro. Our results imply that PERK-modulating agents can potentially be used to manage GO.


Sign in / Sign up

Export Citation Format

Share Document