scholarly journals Groucho-dependent and -independent repression activities of Runt domain proteins.

1997 ◽  
Vol 17 (9) ◽  
pp. 5581-5587 ◽  
Author(s):  
B D Aronson ◽  
A L Fisher ◽  
K Blechman ◽  
M Caudy ◽  
J P Gergen

Runt domain proteins are transcriptional regulators that specify cell fates for processes extending from pattern formation in insects to leukemogenesis in humans. Runt domain family members are defined based on the presence of the 128-amino-acid Runt domain, which is necessary and sufficient for sequence-specific DNA binding. We demonstrate an evolutionarily conserved protein-protein interaction between Runt domain proteins and the corepressor Groucho. The interaction, however, is independent of the Runt domain and can be mapped to a 5-amino-acid sequence, VWRPY, present at the C terminus of all Runt domain proteins. Drosophila melanogaster Runt and Groucho interact genetically; the in vivo repression of a subset of Runt-regulated genes is dependent on the interaction with Groucho and is sensitive to Groucho dosage. Runt's repression of one gene, engrailed, is independent of VWRPY and Groucho, thus demonstrating alternative mechanisms for repression by Runt domain proteins. Unlike other transcriptional regulatory proteins that interact with Groucho, Runt domain proteins are known to activate transcription. This suggests that the Runt domain protein-Groucho interaction may be regulated.

1995 ◽  
Vol 15 (7) ◽  
pp. 3487-3495 ◽  
Author(s):  
M P Draper ◽  
C Salvadore ◽  
C L Denis

The CCR4 protein from Saccharomyces cerevisiae is a component of a multisubunit complex that is required for the regulation of a number of genes in yeast cells. We report here the identification of a mouse protein (mCAF1 [mouse CCR4-associated factor 1]) which is capable of interacting with and binding to the yeast CCR4 protein. The mCAF1 protein was shown to have significant similarity to proteins from humans, Caenorhabditis elegans, Arabidopsis thaliana, and S. cerevisiae. The yeast gene (yCAF1) had been previously cloned as the POP2 gene, which is required for expression of several genes. Both yCAF1 (POP2) and the C. elegans homolog of CAF1 were shown to genetically interact with CCR4 in vivo, and yCAF1 (POP2) physically associated with CCR4. Disruption of the CAF1 (POP2) gene in yeast cells gave phenotypes and defects in transcription similar to those observed with disruptions of CCR4, including the ability to suppress spt10-enhanced ADH2 expression. In addition, yCAF1 (POP2) when fused to LexA was capable of activating transcription. mCAF1 could also activate transcription when fused to LexA and could functionally substitute for yCAF1 in allowing ADH2 expression in an spt10 mutant background. These data imply that CAF1 is a component of the CCR4 protein complex and that this complex has retained evolutionarily conserved functions important to eukaryotic transcription.


2019 ◽  
Vol 218 (4) ◽  
pp. 1128-1137 ◽  
Author(s):  
Kevin S. Cannon ◽  
Benjamin L. Woods ◽  
John M. Crutchley ◽  
Amy S. Gladfelter

Cell shape is well described by membrane curvature. Septins are filament-forming, GTP-binding proteins that assemble on positive, micrometer-scale curvatures. Here, we examine the molecular basis of curvature sensing by septins. We show that differences in affinity and the number of binding sites drive curvature-specific adsorption of septins. Moreover, we find septin assembly onto curved membranes is cooperative and show that geometry influences higher-order arrangement of septin filaments. Although septins must form polymers to stay associated with membranes, septin filaments do not have to span micrometers in length to sense curvature, as we find that single-septin complexes have curvature-dependent association rates. We trace this ability to an amphipathic helix (AH) located on the C-terminus of Cdc12. The AH domain is necessary and sufficient for curvature sensing both in vitro and in vivo. These data show that curvature sensing by septins operates at much smaller length scales than the micrometer curvatures being detected.


2020 ◽  
Vol 6 (35) ◽  
pp. eaba7910
Author(s):  
Shuofeng Yuan ◽  
Hin Chu ◽  
Jingjing Huang ◽  
Xiaoyu Zhao ◽  
Zi-Wei Ye ◽  
...  

Targeting a universal host protein exploited by most viruses would be a game-changing strategy that offers broad-spectrum solution and rapid pandemic control including the current COVID-19. Here, we found a common YxxØ-motif of multiple viruses that exploits host AP2M1 for intracellular trafficking. A library chemical, N-(p-amylcinnamoyl)anthranilic acid (ACA), was identified to interrupt AP2M1-virus interaction and exhibit potent antiviral efficacy against a number of viruses in vitro and in vivo, including the influenza A viruses (IAVs), Zika virus (ZIKV), human immunodeficiency virus, and coronaviruses including MERS-CoV and SARS-CoV-2. YxxØ mutation, AP2M1 depletion, or disruption by ACA causes incorrect localization of viral proteins, which is exemplified by the failure of nuclear import of IAV nucleoprotein and diminished endoplasmic reticulum localization of ZIKV-NS3 and enterovirus-A71-2C proteins, thereby suppressing viral replication. Our study reveals an evolutionarily conserved mechanism of protein-protein interaction between host and virus that can serve as a broad-spectrum antiviral target.


2000 ◽  
Vol 14 (2) ◽  
pp. 158-162 ◽  
Author(s):  
Richard I. Dorsky ◽  
David W. Raible ◽  
Randall T. Moon

We have shown that Wnt signals are necessary and sufficient for neural crest cells to adopt pigment cell fates. nacre, a zebrafish homolog of MITF, is required for pigment cell differentiation. We isolated a promoter region of nacre that contains Tcf/Lef binding sites, which can mediate Wnt responsiveness. This promoter binds to zebrafish Lef1 protein in vitro, and a nacre reporter construct is strongly repressed by dominant-negative Tcf in melanoma cells. Mutation of Tcf/Lef sites abolishes Lef1 binding and reporter function in vivo. Wnt signaling therefore directly activatesnacre, which in turn leads to pigment cell differentiation.


2004 ◽  
Vol 24 (12) ◽  
pp. 5521-5533 ◽  
Author(s):  
David A. Mangus ◽  
Matthew C. Evans ◽  
Nathan S. Agrin ◽  
Mandy Smith ◽  
Preetam Gongidi ◽  
...  

ABSTRACT PAN, a yeast poly(A) nuclease, plays an important nuclear role in the posttranscriptional maturation of mRNA poly(A) tails. The activity of this enzyme is dependent on its Pan2p and Pan3p subunits, as well as the presence of poly(A)-binding protein (Pab1p). We have identified and characterized the associated network of factors controlling the maturation of mRNA poly(A) tails in yeast and defined its relevant protein-protein interactions. Pan3p, a positive regulator of PAN activity, interacts with Pab1p, thus providing substrate specificity for this nuclease. Pab1p also regulates poly(A) tail trimming by interacting with Pbp1p, a factor that appears to negatively regulate PAN. Pan3p and Pbp1p both interact with themselves and with the C terminus of Pab1p. However, the domains required for Pan3p and Pbp1p binding on Pab1p are distinct. Single amino acid changes that disrupt Pan3p interaction with Pab1p have been identified and define a binding pocket in helices 2 and 3 of Pab1p's carboxy terminus. The importance of these amino acids for Pab1p-Pan3p interaction, and poly(A) tail regulation, is underscored by experiments demonstrating that strains harboring substitutions in these residues accumulate mRNAs with long poly(A) tails in vivo.


2001 ◽  
Vol 358 (2) ◽  
pp. 473-480 ◽  
Author(s):  
Yoshiyuki ISHII ◽  
Fumio AMANO

SulA protein, a cell division inhibitor in Escherichia coli, is degraded by Lon protease. The C-terminal eight residues of SulA have been shown to be recognized by Lon; however, it remains to be elucidated which amino acid in the C-terminus of SulA is critical for the recognition of SulA by Lon. To clarify this point, we constructed mutants of SulA with changes in the C-terminal residues, and examined the accumulation and stability of the resulting mutant SulA proteins in vivo. Substitution of the extreme C-terminal histidine residue with another amino acid led to marked accumulation and high stability of SulA in lon+ cells. A SulA mutant in which the C-terminal eight residues were deleted (SulAC161) showed high accumulation and stability, but the addition of histidine to the C-terminus of SulAC161 (SulAC161+H) made it labile. Similarly, SulAC161+H fused to maltose-binding protein (MBP–SulAC161+H) formed a tight complex with and was degraded rapidly by Lon in vitro. Histidine competitively inhibited the degradation of MBP–SulA by Lon, while other amino acids did not. These results suggest that the histidine residue at the extreme C-terminus of SulA is recognized specifically by Lon, leading to a high-affinity interaction between SulA and Lon.


1987 ◽  
Vol 7 (8) ◽  
pp. 2947-2955
Author(s):  
A Y Jong ◽  
M W Clark ◽  
M Gilbert ◽  
A Oehm ◽  
J L Campbell

To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.


2009 ◽  
Vol 191 (17) ◽  
pp. 5553-5562 ◽  
Author(s):  
Dominik Schilling ◽  
Ulrike Gerischer

ABSTRACT In gammaproteobacteria the Hfq protein shows a great variation in size, especially in its C-terminal part. Extremely large Hfq proteins consisting of almost 200 amino acid residues and more are found within the gammaproteobacterial family Moraxellaceae. The difference in size compared to other Hfq proteins is due to a glycine-rich domain near the C-terminal end of the protein. Acinetobacter baylyi, a nonpathogenic soil bacterium and member of the Moraxellaceae encodes a large 174-amino-acid Hfq homologue containing the unique and repetitive amino acid pattern GGGFGGQ within the glycine-rich domain. Despite the presence of the C-terminal extension, A. baylyi Hfq complemented an Escherichia coli hfq mutant in vivo. By using polyclonal anti-Hfq antibodies, we detected the large A. baylyi Hfq that corresponds to its annotated size indicating the expression and stability of the full protein. Deletion of the complete A. baylyi hfq open reading frame resulted in severe reduction of growth. In addition, a deletion or overexpression of Hfq was accompanied by the loss of cell chain assembly. The glycine-rich domain was not responsible for growth and cell phenotypes. hfq gene localization in A. baylyi is strictly conserved within the mutL-miaA-hfq operon, and we show that hfq expression starts within the preceding miaA gene or further upstream.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Angelica Aguilera-Gomez ◽  
Marinke M van Oorschot ◽  
Tineke Veenendaal ◽  
Catherine Rabouille

PARP catalysed ADP-ribosylation is a post-translational modification involved in several physiological and pathological processes, including cellular stress. In order to visualise both Poly-, and Mono-, ADP-ribosylation in vivo, we engineered specific fluorescent probes. Using them, we show that amino-acid starvation triggers an unprecedented display of mono-ADP-ribosylation that governs the formation of Sec body, a recently identified stress assembly that forms in Drosophila cells. We show that dPARP16 catalytic activity is necessary and sufficient for both amino-acid starvation induced mono-ADP-ribosylation and subsequent Sec body formation and cell survival. Importantly, dPARP16 catalyses the modification of Sec16, a key Sec body component, and we show that it is a critical event for the formation of this stress assembly. Taken together our findings establish a novel example for the role of mono-ADP-ribosylation in the formation of stress assemblies, and link this modification to a metabolic stress.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 464-464
Author(s):  
Christina J. Matheny ◽  
Takeshi Corpora ◽  
Maren E. Speck ◽  
Ting-Lei Gu ◽  
John H. Bushweller ◽  
...  

Abstract Runx1 and CBF β are the DNA-binding and non DNA-binding subunits of a core-binding factor that is required for hematopoiesis, and that is frequently mutated in leukemia. Runx2 is the DNA-binding subunit of a core-binding factor required for bone formation. Mono-allelic deletion, nonsense, frameshift, and missense mutations have been found in RUNX1 in familial platelet disorder with predisposition for acute myelogenous leukemia (FPD/AML) and in myelodysplastic syndrome (MDS), and biallelic mutations in RUNX1 are found in 20% of AML M0 patients. Similar types of mono-allelic mutations have been found in RUNX2 in patients with cleidocranial dysplasia (CCD), an inherited skeletal syndrome. FPD/AML and CCD pedigrees have revealed varying degrees of disease severity depending on the nature of the specific mutation. Additionally, it has been observed that mutations involving amino acids in the DNA binding Runt domain that directly contact DNA are associated primarily with Runx1 and hematopoietic disorders, while mutations predicted to disrupt CBF β binding or the Runt domain structure are found only in Runx2 in CCD patients. We introduced 21 amino acid substitutions into the Runt domain of Runx1 identified in FPD/AML, AML M0, and CCD patients, and quantified their effects on DNA binding, heterodimerization with CBFβ, and the Runt domain structure using yeast one- and two-hybrid, quantitative electrophoretic mobility shift, heteronuclear single quantum correlation spectroscopy, and urea denaturation experiments. To address the impact on in vivo function, several of these point mutations were engineered into the endogenous Runx1 allele in mice. These five mutations include: R177X, R174Q, T149A, T161A, and L148F. R177X is found in FPD/AML patients and truncates Runx1 two amino acids before the C-terminal boundary of the Runt domain. R174Q (found in FPD/AML and CCD) disrupts DNA binding 1000-fold, but does not disrupt CBFb binding or perturb the Runt domain fold. T149A (found only in CCD) disrupts CBFβ binding 13-fold while T161A (not found in patients) disrupts CBFβ binding 40-fold. Both T149A and T161A slightly perturb the Runt domain fold, but do not alter DNA binding affinity. L148F (found in CCD) also disrupts the Runt domain fold, and decreases DNA binding. All animals heterozygous for these alleles are viable. Mice homozygous for R177X and R174Q die during gestation. Mice homozygous for the T149A and T161A mutations, on the other hand, are born at normal Mendelian frequencies, but 62% and 100%, respectively, die by or at three weeks of age from an undetermined cause. The effects of these mutations on hematopoietic progenitor and platelet numbers, both of which are affected in FPD/AML patients, will be presented. We conclude that mutations that affect CBFβ binding result in hypomorphic Runx1 alleles, while mutations involving DNA contacts result in more severe inactivation of Runx1 function. Thus FPD/AML, AML M0, and MDS require mutations that severely inactivate Runx1 function, while CCD can result from more subtle alterations in Runx2.


Sign in / Sign up

Export Citation Format

Share Document