scholarly journals Bone-Specific Expression of the Alpha Chain of the Nascent Polypeptide-Associated Complex, a Coactivator Potentiating c-Jun-Mediated Transcription

1998 ◽  
Vol 18 (3) ◽  
pp. 1312-1321 ◽  
Author(s):  
Alain Moreau ◽  
Wagner V. Yotov ◽  
Francis H. Glorieux ◽  
René St-Arnaud

ABSTRACT The alpha chain of the nascent polypeptide-associated complex (α-NAC) coactivator was shown to potentiate the activity of the homodimeric c-Jun activator, while transcription mediated by the c-Fos/c-Jun heterodimer was unaffected. The use of deletion mutants in pull-down assays revealed that α-NAC interacted with amino acids 1 to 89 of the c-Jun protein and that the coactivator could interact with both the unphosphorylated and the serine 73-phosphorylated form of c-Jun. N-terminal-deleted c-Jun protein failed to interact with α-NAC in mammalian two-hybrid assays, while mutant c-Jun proteins lacking the leucine zipper or the basic domain retained interaction with α-NAC in vivo. Kinetics studies with purified c-Jun homodimer and recombinant α-NAC proteins allowed determination of the mechanism of coactivation by α-NAC: the coactivator stabilized the AP-1 complex formed by the c-Jun homodimer on its DNA recognition sequence through an eightfold reduction in the dissociation constant (kd ) of the complex. This effect of α-NAC was specific, because α-NAC could not stabilize the interactions of JunB or Sp1 with their cognate binding sites. Interestingly, the expression of α-NAC was first detected at 14.5 to 15 days postconception, concomitantly with the onset of ossification during embryogenesis. The α-NAC protein was specifically expressed in differentiated osteoblasts at the centers of ossification. Thus, the α-NAC gene product exhibits the properties of a developmentally regulated, bone-specific transcriptional coactivator.

1998 ◽  
Vol 18 (3) ◽  
pp. 1303-1311 ◽  
Author(s):  
Wagner V. Yotov ◽  
Alain Moreau ◽  
René St-Arnaud

ABSTRACT We report the characterization of clone 1.9.2, a gene expressed in mineralizing osteoblasts. Remarkably, clone 1.9.2 is the murine homolog of the alpha chain of the nascent polypeptide-associated complex (α-NAC). Based on sequence similarities between α-NAC/1.9.2 and transcriptional regulatory proteins and the fact that the heterodimerization partner of α-NAC was identified as the transcription factor BTF3b (B. Wiedmann, H. Sakai, T. A. Davis, and M. Wiedmann, Nature 370:434–440, 1994), we investigated a putative role for α-NAC/1.9.2 in transcriptional control. The α-NAC/1.9.2 protein potentiated by 10-fold the activity of the chimeric activator GAL4/VP-16 in vivo. The potentiation was shown to be mediated at the level of gene transcription, because α-NAC/1.9.2 increased GAL4/VP-16-mediated mRNA synthesis without affecting the half-life of the GAL4/VP-16 fusion protein. Moreover, the interaction of α-NAC/1.9.2 with a transcriptionally defective mutant of GAL4/VP-16 was severely compromised. Specific protein-protein interactions between α-NAC/1.9.2 and GAL4/VP-16 were demonstrated by gel retardation, affinity chromatography, and protein blotting assays, while interactions with TATA box-binding protein (TBP) were detected by immunoprecipitation, affinity chromatography, and protein blotting assays. Based on these interactions that define the coactivator class of proteins, we conclude that the α-NAC/1.9.2 gene product functions as a transcriptional coactivator.


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1639-1652 ◽  
Author(s):  
Scott E Erdman ◽  
Hui-Ju Chen ◽  
Kenneth C Burtis

The doublesex (dsx) gene of Drosophila melanogaster encodes both male-specific (DSXM) and female-specific (DSXF) polypeptides, which are required for normal differentiation of numerous sexually dimorphic somatic traits. The DSX polypeptides are transcription factors and have been shown previously to bind through a zinc finger-like domain to specific sites in an enhancer regulating sex-specific expression of yolk protein genes. We have determined the consensus target sequence for this DNA binding domain to be a palindromic sequence NNACTAAGAATGTNNTC composed of two half-sites around a central (A/T) base pair. As predicted by the symmetric nature of this site, we have found that the DSX proteins exist as dimers in vivo and have mapped two independent dimerization domains by the yeast two-hybrid method; one in the non-sex-specific amino-terminal region of the protein and one that includes the partially sex-specific carboxy-terminal domains of both the male and female polypeptides. We have further identified a missense mutation that eliminates dsx function in female flies, and shown that the same mutation prevents dimerization of DSXF in the yeast two-hybrid system, indicating a critical role for dimerization in dsx function in vivo.


1987 ◽  
Vol 26 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. Selvaraj ◽  
M. R. Suresh ◽  
G. McLean ◽  
D. Willans ◽  
C. Turner ◽  
...  

The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both a and ß configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models.


1974 ◽  
Vol 32 (02/03) ◽  
pp. 405-416 ◽  
Author(s):  
M. R Hardeman ◽  
Carina J L. Heynens

SummaryStorage experiments were performed at 4°, 25° and 37° C with platelet-rich plasma under sterile conditions. In some experiments also the effect of storing platelets at 4° C in whole blood was investigated.Before, during and after three days of storage, the platelets were tested at 37° C for their serotonin uptake and response to hypotonic shock. In addition some glycolytic intermediates were determined.A fair correlation was noticed between the serotonin uptake and hypotonic shock experiments. Both parameters were best maintained at 25° C. Also platelet counting, performed after the storage period, indicated 25° C as the best storage temperature. Determination of glycolytic intermediates did not justify any conclusion regarding the optimal storage temperature. Of the various anticoagulants studied, ACD and heparin gave the best results as to the serotonin uptake and hypotonic shock response, either with fresh or stored platelets. The use of EDTA resulted in the lowest activity, especially after storage.The results of these storage experiments in vitro, correspond well with those in vivo reported in the literature.


2020 ◽  
Author(s):  
James Frederich ◽  
Ananya Sengupta ◽  
Josue Liriano ◽  
Ewa A. Bienkiewicz ◽  
Brian G. Miller

Fusicoccin A (FC) is a fungal phytotoxin that stabilizes protein–protein interactions (PPIs) between 14-3-3 adapter proteins and their phosphoprotein interaction partners. In recent years, FC has emerged as an important chemical probe of human 14-3-3 PPIs implicated in cancer and neurological diseases. These previous studies have established the structural requirements for FC-induced stabilization of 14-3-3·client phosphoprotein complexes; however, the effect of different 14-3-3 isoforms on FC activity has not been systematically explored. This is a relevant question for the continued development of FC variants because there are seven distinct isoforms of 14-3-3 in humans. Despite their remarkable sequence and structural similarities, a growing body of experimental evidence supports both tissue-specific expression of 14-3-3 isoforms and isoform-specific functions <i>in vivo</i>. Herein, we report the isoform-specificity profile of FC <i>in vitro</i>using recombinant human 14-3-3 isoforms and a focused library of fluorescein-labeled hexaphosphopeptides mimicking the C-terminal 14-3-3 recognition domains of client phosphoproteins targeted by FC in cell culture. Our results reveal modest isoform preferences for individual client phospholigands and demonstrate that FC differentially stabilizes PPIs involving 14-3-3s. Together, these data provide strong motivation for the development of non-natural FC variants with enhanced selectivity for individual 14-3-3 isoforms.


2019 ◽  
Vol 15 (4) ◽  
pp. 312-318
Author(s):  
Shuoye Yang

Background: The therapeutic ability and application of antifungal peptide (APs) are limited by their physico-chemical and biological properties, the nano-liposomal encapsulation would improve the in vivo circulation and stability. </P><P> Objective: To develop a long-circulating liposomal delivery systems encapsulated APs-CGA-N12 with PEGylated lipids and cholesterol, and investigated through in vivo pharmacokinetics. Methods: The liposomes were prepared and characterized, a rapid and simple liquid chromatographytandem mass spectrometry (LC-MS/MS) assay was developed for the determination of antifungal peptide in vivo, the pharmacokinetic characteristics of APs liposomes were evaluated in rats. Results: Liposomes had a large, unilamellar structure, particle size and Zeta potential ranged from 160 to 185 nm and -0.55 to 1.1 mV, respectively. The results indicated that the plasma concentration of peptides in reference solutions rapidly declined after intravenous administration, whereas the liposomeencapsulated ones showed slower elimination. The AUC(0-∞) was increased by 3.0-fold in liposomes in comparison with standard solution (20 mg·kg-1), the half-life (T1/2) was 1.6- and 1.5-fold higher compared to the reference groups of 20 and 40 mg·kg-1, respectively. Conclusion: Therefore, it could be concluded that liposomal encapsulation effectively improved the bioavailability and pharmacokinetic property of antifungal peptides.


2018 ◽  
Vol 9 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Aparna Bansal ◽  
Himanshu

Introduction: Gene therapy has emerged out as a promising therapeutic pave for the treatment of genetic and acquired diseases. Gene transfection into target cells using naked DNA is a simple and safe approach which has been further improved by combining vectors or gene carriers. Both viral and non-viral approaches have achieved a milestone to establish this technique, but non-viral approaches have attained a significant attention because of their favourable properties like less immunotoxicity and biosafety, easy to produce with versatile surface modifications, etc. Literature is rich in evidences which revealed that undoubtedly, non–viral vectors have acquired a unique place in gene therapy but still there are number of challenges which are to be overcome to increase their effectiveness and prove them ideal gene vectors. Conclusion: To date, tissue specific expression, long lasting gene expression system, enhanced gene transfection efficiency has been achieved with improvement in delivery methods using non-viral vectors. This review mainly summarizes the various physical and chemical methods for gene transfer in vitro and in vivo.


2019 ◽  
Vol 20 (15) ◽  
pp. 3679 ◽  
Author(s):  
Lin Chen ◽  
Alyne Simões ◽  
Zujian Chen ◽  
Yan Zhao ◽  
Xinming Wu ◽  
...  

Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.


Sign in / Sign up

Export Citation Format

Share Document