scholarly journals Requirement of Cyclin E-Cdk2 Inhibition in p16INK4a-Mediated Growth Suppression

1998 ◽  
Vol 18 (9) ◽  
pp. 5284-5290 ◽  
Author(s):  
Hong Jiang ◽  
Hubert S. Chou ◽  
Liang Zhu

ABSTRACT Loss-of-function mutations of p16 INK4a have been identified in a large number of human tumors. An established biochemical function of p16 is its ability to specifically inhibit cyclin D-dependent kinases in vitro, and this inhibition is believed to be the cause of the p16-mediated G1 cell cycle arrest after reintroduction of p16 into p16-deficient tumor cells. However, a mutant of Cdk4, Cdk4N158, designed to specifically inhibit cyclin D-dependent kinases through dominant negative interference, was unable to arrest the cell cycle of the same cells (S. van den Heuvel and E. Harlow, Science 262:2050–2054, 1993). In this study, we determined functional differences between p16 and Cdk4N158. We show that p16 and Cdk4N158 inhibit the kinase activity of cellular cyclin D1 complexes through different mechanisms. p16 dissociated cyclin D1-Cdk4 complexes with the release of bound p27 KIP1 , while Cdk4N158 formed complexes with cyclin D1 and p27. In cells induced to overexpress p16, a higher portion of cellular p27 formed complexes with cyclin E-Cdk2, and Cdk2-associated kinase activities were correspondingly inhibited. Cells engineered to express moderately elevated levels of cyclin E became resistant to p16-mediated growth suppression. These results demonstrate that inhibition of cyclin D-dependent kinase activity may not be sufficient to cause G1 arrest in actively proliferating tumor cells. Inhibition of cyclin E-dependent kinases is required in p16-mediated growth suppression.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3498-3498
Author(s):  
Lapo Alinari ◽  
Ryan B. Edwards ◽  
Courtney J. Prince ◽  
William H. Towns ◽  
Rajeswaran Mani ◽  
...  

Abstract Abstract 3498 During cell cycle progression, D class cyclins activate cyclin dependent kinases (CDK) 4 and 6 to phosphorylate and inactivate Rb, allowing E2F-1 mediated transcription of additional cell cycle genes including cyclin E to drive S phase entry. This critical pathway is nearly universally dysregulated in cancer, providing tumor cells a strong growth advantage and escape from normal mitotic control. Substantial research is being directed toward targeting this pathway in many cancer types, with some preliminary successes being achieved with pharmacologic inhibitors of CDK4/6. However the development of alternative strategies to block this pathway could potentially provide broad therapeutic benefit. A prime example of a tumor with a disrupted cyclin D axis is Mantle Cell Lymphoma (MCL), in which the t(11;14) translocation places CCND1, the gene for cyclin D1, under the control of an immunoglobulin promoter. This results in sustained cyclin D1 expression in tumor cells and concomitant Rb inactivation, S phase entry and cell division. MCL is a relatively uncommon subset of Non-Hodgkin Lymphoma, but accounts for a disproportionate number of deaths. Treatments are limited and relapse is nearly universal; thus, new treatment strategies are essential for this disease. Silvestrol is a structurally unique, plant-derived cyclopenta[b]benzofuran with potent in vitro and in vivo anti-tumor activity in several model systems including B-cell acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL). Silvestrol inhibits the initiation step of translation by preventing assembly of eIF4A and capped mRNA into the eIF4F complex, leading to selective loss of short half-life proteins such as Mcl-1 and cyclin D1. We therefore hypothesized that silvestrol, through the depletion of cyclin D1, would demonstrate efficacy in MCL. Silvestrol showed low nanomolar IC50 values in the JeKo-1 (13 nM), Mino (17 nM) and SP-53 (43 nM) MCL cell lines at 48 hr (MTS assay; cell death confirmed by propidium iodide flow cytometry). This potency was similar in primary MCL tumor cells. Longer exposure times substantially improved the cytotoxicity of silvestrol assessed at 48 hr (approximately 50% effect achieved with a 16 hr exposure vs. 80% effect with a 24 hr exposure), suggesting that the cellular impacts of this agent increase with exposure time. Cyclins D1 and D3 were dramatically reduced in MCL cell lines with just 10 nM silvestrol at 16 hr (cyclin D2 was undetectable in these cells), with subsequent loss of Rb phosphorylation as well as cyclin E mRNA and protein, culminating in G1 cell cycle arrest. Similar to what we previously showed in CLL and ALL cells, silvestrol treatment under these conditions also caused loss of Mcl-1 protein with concurrent mitochondrial depolarization, although the exact mechanism of silvestrol-mediated cytotoxicity in these cells is still under investigation. In an aggressive xenograft mouse model of MCL, silvestrol produced a highly significant improvement in survival [median survival of vehicle vs. silvestrol treated mice (1.5 mg/kg every 48 hr) = 27 vs. 38 days; P<0.0001] without detectable toxicity. Together, these data demonstrate that the translation inhibitor silvestrol has promising in vitro and in vivo activity in MCL preclinical models. Furthermore, as the cyclin D/CDK/Rb axis is disrupted in most tumor types, this strategy may be broadly effective in other cancers as well. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 19 (7) ◽  
pp. 4843-4854 ◽  
Author(s):  
Heinz Ruffner ◽  
Wei Jiang ◽  
A. Grey Craig ◽  
Tony Hunter ◽  
Inder M. Verma

ABSTRACT BRCA1 is a cell cycle-regulated nuclear protein that is phosphorylated mainly on serine and to a lesser extent on threonine residues. Changes in phosphorylation occur in response to cell cycle progression and DNA damage. Specifically, BRCA1 undergoes hyperphosphorylation during late G1 and S phases of the cell cycle. Here we report that BRCA1 is phosphorylated in vivo at serine 1497 (S1497), which is part of a cyclin-dependent kinase (CDK) consensus site. S1497 can be phosphorylated in vitro by CDK2-cyclin A or E. BRCA1 coimmunoprecipitates with an endogenous serine-threonine protein kinase activity that phosphorylates S1497 in vitro. This cellular kinase activity is sensitive to transfection of a dominant negative form of CDK2 as well as the application of the CDK inhibitors p21 and butyrolactone I but not p16. Furthermore, BRCA1 coimmunoprecipitates with CDK2 and cyclin A. These results suggest that the endogenous kinase activity is composed of CDK2-cyclin complexes, at least in part, concordant with the G1/S-specific increase in BRCA1 phosphorylation.


2002 ◽  
Vol 22 (7) ◽  
pp. 2242-2254 ◽  
Author(s):  
Xiaohong Leng ◽  
Martin Noble ◽  
Peter D. Adams ◽  
Jun Qin ◽  
J. Wade Harper

ABSTRACT p107 functions to control cell division and development through interaction with members of the E2F family of transcription factors. p107 is phosphorylated in a cell cycle-regulated manner, and its phosphorylation leads to its release from E2F. Although it is known that p107 physically associates with E- and A-type cyclin/cyclin-dependent kinase 2 (Cdk2) complexes through a cyclin-binding RXL motif located in the spacer domain, the mechanisms underlying p107 inactivation via phosphorylation remain poorly defined. Recent genetic evidence indicates a requirement for cyclin D1/Cdk4 complexes in p107 inactivation. In this work, we provide direct biochemical evidence for the involvement of cyclin D1/Cdk4 in the inactivation of p107's growth-suppressive function. While coexpression of cyclin D1/Cdk4 can reverse the cell cycle arrest properties of p107 in Saos-2 cells, we find that p107 in which the Lys-Arg-Arg-Leu sequence of the RXL motif is replaced by four alanine residues is largely refractory to inactivation by cyclin D/Cdk4, indicating a role for this motif in p107 inactivation without a requirement for its tight interaction with cyclin D1/Cdk4. We identified four phosphorylation sites in p107 (Thr-369, Ser-640, Ser-964, and Ser-975) that are efficiently phosphorylated by Cdk4 but not by Cdk2 in vitro and are also phosphorylated in tissue culture cells. Growth suppression by p107 containing nonphosphorylatable residues in these four sites is not reversed by coexpression of cyclin D1/Cdk4. In model p107 spacer region peptides, phosphorylation of S640 by cyclin D1/Cdk4 is strictly dependent upon an intact RXL motif, but phosphorylation of this site in the absence of an RXL motif can be partially restored by replacement of S643 by arginine. This suggests that one role for the RXL motif is to facilitate phosphorylation of nonconsensus Cdk substrates. Taken together, these data indicate that p107 is inactivated by cyclin D1/Cdk4 via direct phosphorylation and that the RXL motif of p107 plays a role in its inactivation by Cdk4 in the absence of stable binding.


2008 ◽  
Vol 29 (4) ◽  
pp. 986-999 ◽  
Author(s):  
Arpita Ray ◽  
Melissa K. James ◽  
Stéphane Larochelle ◽  
Robert P. Fisher ◽  
Stacy W. Blain

ABSTRACT Cell cycle progression is regulated by cyclin-dependent kinases (cdk's), which in turn are regulated by their interactions with stoichiometric inhibitors, such as p27Kip1. Although p27 associates with cyclin D-cyclin-dependent kinase 4 (cdk4) constitutively, whether or not it inhibits this complex is dependent on the absence or presence of a specific tyrosine phosphorylation that converts p27 from a bound inhibitor to a bound noninhibitor under different growth conditions. This phosphorylation occurs within the 3-10 helix of p27 and may dislodge the helix from cdk4's active site to allow ATP binding. Here we show that the interaction of nonphosphorylated p27 with cdk4 also prevents the activating phosphorylation of the T-loop by cyclin H-cdk7, the cdk-activating kinase (CAK). Even though the cyclin H-cdk7 complex is present and active in contact-arrested cells, p27's association with cyclin D-cdk4 prevents T-loop phosphorylation. When p27 is tyrosine phosphorylated in proliferating cells or in vitro with the tyrosine Y kinase Abl, phosphorylation of cdk4 by cyclin H-cdk7 is permitted, even without dissociation of p27. This suggests that upon release from the contact-arrested state, a temporal order for the reactivation of inactive p27-cyclin D-cdk4 complexes must exist: p27 must be Y phosphorylated first, directly permitting cyclin H-cdk7 phosphorylation of residue T172 and the consequent restoration of kinase activity. The non-Y-phosphorylated p27-cyclin D-cdk4 complex could be phosphorylated by purified Csk1, a single-subunit CAK from fission yeast, but was still inactive due to p27's occlusion of the active site. Thus, the two modes by which p27 inhibits cyclin D-cdk4 are independent and may reinforce one another to inhibit kinase activity in contact-arrested cells, while maintaining a reservoir of preformed complex that can be activated rapidly upon cell cycle reentry.


2001 ◽  
Vol 21 (11) ◽  
pp. 3616-3631 ◽  
Author(s):  
Kamilah Alexander ◽  
Philip W. Hinds

ABSTRACT In vivo and in vitro evidence indicate that cells do not divide indefinitely but instead stop growing and undergo a process termed cellular proliferative senescence. Very little is known about how senescence occurs, but there are several indications that the retinoblastoma protein (pRb) is involved, the most striking being that reintroduction of RB into RB −/−tumor cell lines induces senescence. In investigating the mechanism by which pRb induces senescence, we have found that pRb causes a posttranscriptional accumulation of the cyclin-dependent kinase inhibitor p27KIP1 that is accompanied by an increase in p27KIP1 specifically bound to cyclin E and a concomitant decrease in cyclin E-associated kinase activity. In contrast, pRb-related proteins p107 and p130, which also decrease cyclin E-kinase activity, do not cause an accumulation of p27KIP1 and induce senescence poorly. In addition, the use of pRb proteins mutated in the pocket domain demonstrates that pRb upregulation of p27KIP1 and senescence induction do not require the interaction of pRb with E2F. Furthermore, ectopic expression of p21CIP1 or p27KIP1 induces senescence but not the morphology change associated with pRb-mediated senescence, uncoupling senescence from the morphological transformation. Finally, the ability of pRb to maintain cell cycle arrest and induce senescence is reversibly abrogated by ablation of p27KIP1 expression. These findings suggest that prolonged cell cycle arrest through the persistent and specific inhibition of cdk2 activity by p27KIP1 is critical for pRb-induced senescence.


2015 ◽  
Vol 4 ◽  
pp. STI.S30306 ◽  
Author(s):  
Kazushi Inoue ◽  
Elizabeth A. Fry

Cyclin D1 binds and activates cyclin-dependent kinases 4/6 (Cdk4/6) to phosphorylate the retinoblastoma (RB) family proteins, relieving E2F/DPs from the negative restraint of RB proteins and histone deacetylases (HDACs). The cyclin D-Cdk4/6 complexes activate cyclin E/Cdk2 through titration of the Cdk inhibitors p21Cip1/p27Kip1. Cyclin E/Cdk2 further phosphorylates RBs, thereby activating E2F/DPs, and cells enter the S-phase of the cell cycle. Cyclin D-Cdk4/6 also phosphorylates MEP50 subunit of the protein arginine methyltransferase 5 (PRMT5), which cooperates with cyclin D1 to drive lymphomagenesis in vivo. Activated PRMPT5 causes arginine methylation of p53 to suppress expression of proapoptotic and antiproliferative target genes, explaining the molecular mechanism for tumorigenesis. Cyclin D1 physically interacts with transcription factors such as estrogen receptor, androgen receptor, and Myb family proteins to regulate gene expression in Cdk-independent fashion. Dmp1 is a Myb-like protein that quenches the oncogenic signals from activated Ras or HER2 by inducing Arf/p53-dependent cell cycle arrest. Cyclin D1 binds to Dmp1 to activate both Arf and Ink4a promoters to induce cell cycle arrest or apoptosis in non-transformed cells to prevent them from neoplastic transformation. Dmp1deficiency significantly accelerates mouse mammary tumorigenesis with reduced apoptosis and increased metastasis. Cyclin D1 interferes with ligand activation of PPARγ involved in cellular differentiation; it also physically interacts with HDACs and p300 to repress gene expression. It has also been shown that cyclin D1 accelerates tumorigenesis through transcriptional activation of miR-17/20 and Dicer1 which, in turn, represses cyclin D1 expression. Identification of cyclin D1-binding proteins/promoters will be essential for further clarification of its biological activities.


1995 ◽  
Vol 15 (5) ◽  
pp. 2682-2688 ◽  
Author(s):  
F K Chan ◽  
J Zhang ◽  
L Cheng ◽  
D N Shapiro ◽  
A Winoto

The cell cycle in mammalian cells is regulated by a series of cyclins and cyclin-dependent kinases (CDKs). The G1/S checkpoint is mainly dictated by the kinase activities of the cyclin D-CDK4 and/or cyclin D-CDK6 complex and the cyclin E-CDK2 complex. These G1 kinases can in turn be regulated by cell cycle inhibitors, which may cause the cells to arrest at the G1 phase. In T-cell hybridomas, addition of anti-T-cell receptor antibody results not only in G1 arrest but also in apoptosis. In searching for a protein(s) which might interact with Nur77, an orphan steroid receptor required for activation-induced apoptosis of T-cell hybridomas, we have cloned a novel human and mouse CDK inhibitor, p19. The deduced p19 amino acid sequence consists of four ankyrin repeats with 48% identity to p16. The human p19 gene is located on chromosome 19p13, distinct from the positions of p18, p16, and p15. Its mRNA is expressed in all cell types examined. The p19 fusion protein can associate in vitro with CDK4 but not with CDK2, CDC2, or cyclin A, B, E, or D1 to D3. Addition of p19 protein can lead to inhibition of the in vitro kinase activity of cyclin D-CDK4 but not that of cyclin E-CDK2. In T-cell hybridoma DO11.10, p19 was found in association with CDK4 and CDK6 in vivo, although its association with Nur77 is not clear at this point. Thus, p19 is a novel CDK inhibitor which may play a role in the cell cycle regulation of T cells.


1997 ◽  
Vol 17 (9) ◽  
pp. 5640-5647 ◽  
Author(s):  
D Resnitzky

Normal fibroblasts are dependent on adhesion to a substrate for cell cycle progression. Adhesion-deprived Rat1 cells arrest in the G1 phase of the cell cycle, with low cyclin E-dependent kinase activity, low levels of cyclin D1 protein, and high levels of the cyclin-dependent kinase inhibitor p27kip1. To understand the signal transduction pathway underlying adhesion-dependent growth, it is important to know whether prevention of any one of these down-regulation events under conditions of adhesion deprivation is sufficient to prevent the G1 arrest. To that end, sublines of Rat1 fibroblasts capable of expressing cyclin E, cyclin D1, or both in an inducible manner were used. Ectopic expression of cyclin D1 was sufficient to allow cells to enter S phase in an adhesion-independent manner. In contrast, cells expressing exogenous cyclin E at a level high enough to overcome the p27kip1-imposed inhibition of cyclin E-dependent kinase activity still arrested in G1 when deprived of adhesion. Moreover, expression of both cyclins D1 and E in the same cells did not confer any additional growth advantage upon adhesion deprivation compared to the expression of cyclin D1 alone. Exogenously expressed cyclin D1 was down-regulated under conditions of adhesion deprivation, despite the fact that it was expressed from a heterologous promoter. The ability of cyclin D1-induced cells to enter S phase in an adhesion-independent manner disappears as soon as cyclin D1 proteins disappear. These results suggest that adhesion-dependent cell cycle progression is mediated through cyclin D1, at least in Rat1 fibroblasts.


2015 ◽  
Vol 27 (1) ◽  
pp. 197
Author(s):  
S.-H. Kim ◽  
K.-C. Choi

Triclosan (Tri) is one of many endocrine-disrupting chemicals (EDCs) that are scattered with environment agents, such as toothpastes, deodorants, and cleaning supplies. As a phytoestrogen, kaempferol (Kae) is one of bioflavonoids, which has been found in a variety of vegetables including broccoli, tea, and tomatoes. Although Kae may have anti-cancer activity, its exact mechanism is under investigation, and might be the induction of apoptosis and inhibition of cell proliferation or angiogenesis. In this study, we examined the anti-proliferative effects of Kae in Tri-induced cell growth in MCF-7 breast cancer cells. A proper concentration and co-treatment effect of Tri and Kae were determined by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay to measure cell viability in vitro. MCF-7 cells were cultured with a negative control (0.1% DMSO), E2 (1 × 10–9 M), Tri (10–5–10–8 M) and Kae (50, 70, and 90 mM). In this study, treatment with Tri (10–6 M) increased the cell viability of MCF-7 cells, while Kae (50 mM) significantly reduced the cell viability compared to the negative control (P < 0.05). In addition, Kae significantly reversed Tri-induced MCF-7 cell growth at 50 mM compared with a higher concentration (100 mM; P < 0.05). To confirm that Kae inhibited Tri-induced cell growth, we examined the transcriptional levels of cell growth and apoptosis-related markers, i.e. cyclin D, p21, cyclin E, p27 and bcl-2, and bax genes, using reverse transcription (RT)-PCR. The expression levels of cyclin D, cyclin E, and bax/bcl-2 ratio were increased, while those of p21 and p27 mRNAs were decreased by Tri in MCF-7 cells. In addition, Kae treatment significantly reversed Tri-induced gene expressions in an opposite manner. In parallel with its mRNA level, the protein level of cyclin E, p-ERK and p-MEK1/2 were induced by Tri while it was reversed by Kae as shown by Western blot analysis. The expression levels of p21 and bax genes were altered by Tri and reversed by Kae treatment in this study. As an in vivo model, a xenografted mouse model was generated following injection with MCF-7 breast cancer cells in 6 weeks. In parallel with in vitro results, tumour volumes following treatment with E2 and Tri were continually increased compared to a vehicle (corn oil). It was of interest that treatment of the mice with combination of E2 plus Kae or Tri plus Kae showed less tumour formation rather than that of singly treated mice with E2 or Tri. Taken together, these results indicate that Kae may inhibit the growth of MCF-7 cells via regulating of cell cycle and apoptosis-related genes. In addition, EDC-induced progression of breast cancer may be suppressed by a phytoestrogen, i.e. Kae, in a specific manner.


2001 ◽  
Vol 21 (16) ◽  
pp. 5631-5643 ◽  
Author(s):  
Lucia Latella ◽  
Alessandra Sacco ◽  
Deborah Pajalunga ◽  
Marianne Tiainen ◽  
Daniela Macera ◽  
...  

ABSTRACT Terminal cell differentiation entails definitive withdrawal from the cell cycle. Although most of the cells of an adult mammal are terminally differentiated, the molecular mechanisms preserving the postmitotic state are insufficiently understood. Terminally differentiated skeletal muscle cells, or myotubes, are a prototypic terminally differentiated system. We previously identified a mid-G1 block preventing myotubes from progressing beyond this point in the cell cycle. In this work, we set out to define the molecular basis of such a block. It is shown here that overexpression of highly active cyclin E and cdk2 in myotubes induces phosphorylation of pRb but cannot reactivate DNA synthesis, underscoring the tightness of cell cycle control in postmitotic cells. In contrast, forced expression of cyclin D1 and wild-type or dominant-negative cdk4 in myotubes restores physiological levels of cdk4 kinase activity, allowing progression through the cell cycle. Such reactivation occurs in myotubes derived from primary, as well as established, C2C12 myoblasts and is accompanied by impairment of muscle-specific gene expression. Other terminally differentiated systems as diverse as adipocytes and nerve cells are similarly reactivated. Thus, the present results indicate that the suppression of cyclin D1-associated kinase activity is of crucial importance for the maintenance of the postmitotic state in widely divergent terminally differentiated cell types.


Sign in / Sign up

Export Citation Format

Share Document