scholarly journals The Polycomb-Group GeneEzh2 Is Required for Early Mouse Development

2001 ◽  
Vol 21 (13) ◽  
pp. 4330-4336 ◽  
Author(s):  
Dónal O'Carroll ◽  
Sylvia Erhardt ◽  
Michaela Pagani ◽  
Sheila C. Barton ◽  
M. Azim Surani ◽  
...  

ABSTRACT Polycomb-group (Pc-G) genes are required for the stable repression of the homeotic selector genes and other developmentally regulated genes, presumably through the modulation of chromatin domains. Among the Drosophila Pc-G genes,Enhancer of zeste [E(z)] merits special consideration since it represents one of the Pc-G genes most conserved through evolution. In addition, the E(Z) protein family contains the SET domain, which has recently been linked with histone methyltransferase (HMTase) activity. Although E(Z)-related proteins have not (yet) been directly associated with HMTase activity, mammalian Ezh2 is a member of a histone deacetylase complex. To investigate its in vivo function, we generated mice deficient for Ezh2. The Ezh2 null mutation results in lethality at early stages of mouse development. Ezh2 mutant mice either cease developing after implantation or initiate but fail to complete gastrulation. Moreover, Ezh2-deficient blastocysts display an impaired potential for outgrowth, preventing the establishment of Ezh2-null embryonic stem cells. Interestingly, Ezh2 is up-regulated upon fertilization and remains highly expressed at the preimplantation stages of mouse development. Together, these data suggest an essential role forEzh2 during early mouse development and genetically linkEzh2 with eed and YY1, the only other early-acting Pc-G genes.

Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 2753-2759 ◽  
Author(s):  
Qiurong Liu ◽  
Fouad Shalaby ◽  
Jamie Jones ◽  
Denis Bouchard ◽  
Daniel J. Dumont

Ship is a recently identified SH2-containing inositol polyphosphate 5-phosphatase that has been implicated as an important signaling molecule in cell-culture systems. To understand the physiologic function of Ship in vivo, we performed expression studies of Ship during mouse development. Results of this study demonstrate the expression of ship to be in late primitive-streak stage embryos (7.5 days postcoitus [dpc]), when hematopoiesis is thought to begin, and the expression is restricted to the hematopoietic lineage in mouse embryo. In adult mice, Ship expression continues to be in the majority of cells from hematopoietic origin, including granulocytes, monocytes, and lymphocytes, and is also found in the spermatids of the testis. Furthermore, the level of Ship expression is developmentally regulated during T-cell maturation. These results suggest a possible role for Ship in the differentiation and maintenance of the hematopoietic lineages and in spermatogenesis.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhechun Zhang ◽  
Steven Zwick ◽  
Ethan Loew ◽  
Joshua S. Grimley ◽  
Sharad Ramanathan

Abstract Morphogen signals are essential for cell fate specification during embryogenesis. Some receptors that sense these morphogens are known to localize to only the apical or basolateral membrane of polarized cell lines in vitro. How such localization affects morphogen sensing and patterning in the developing embryo remains unknown. Here, we show that the formation of a robust BMP signaling gradient in the early mouse embryo depends on the restricted, basolateral localization of BMP receptors. The mis-localization of receptors to the apical membrane results in ectopic BMP signaling in the mouse epiblast in vivo. With evidence from mathematical modeling, human embryonic stem cells in vitro, and mouse embryos in vivo, we find that the geometric compartmentalization of BMP receptors and ligands creates a signaling gradient that is buffered against fluctuations. Our results demonstrate the importance of receptor localization and embryo geometry in shaping morphogen signaling during embryogenesis.


2000 ◽  
Vol 20 (9) ◽  
pp. 3069-3078 ◽  
Author(s):  
Joyce Ng ◽  
Craig M. Hart ◽  
Kelly Morgan ◽  
Jeffrey A. Simon

ABSTRACT The extra sex combs (ESC) and Enhancer of zeste [E(Z)] proteins, members of the Polycomb group (PcG) of transcriptional repressors, interact directly and are coassociated in fly embryos. We report that these two proteins are components of a 600-kDa complex in embryos. Using gel filtration and affinity chromatography, we show that this complex is biochemically distinct from previously described complexes containing the PcG proteins Polyhomeotic, Polycomb, and Sex comb on midleg. In addition, we present evidence that ESC is phosphorylated in vivo and that this modified ESC is preferentially associated in the complex with E(Z). Modified ESC accumulates between 2 and 6 h of embryogenesis, which is the developmental time whenesc function is first required. We find that mutations inE(z) reduce the ratio of modified to unmodified ESC in vivo. We have also generated germ line transformants that express ESC proteins bearing site-directed mutations that disrupt ESC-E(Z) binding in vitro. These mutant ESC proteins fail to provideesc function, show reduced levels of modification in vivo, and are still assembled into complexes. Taken together, these results suggest that ESC phosphorylation normally occurs after assembly into ESC-E(Z) complexes and that it contributes to the function or regulation of these complexes. We discuss how biochemically separable ESC-E(Z) and PC-PH complexes might work together to provide PcG repression.


1998 ◽  
Vol 18 (6) ◽  
pp. 3586-3595 ◽  
Author(s):  
Richard G. A. B. Sewalt ◽  
Johan van der Vlag ◽  
Marco J. Gunster ◽  
Karien M. Hamer ◽  
Jan L. den Blaauwen ◽  
...  

ABSTRACT In Drosophila melanogaster, thePolycomb-group (PcG) andtrithorax-group (trxG) genes have been identified as repressors and activators, respectively, of gene expression. Both groups of genes are required for the stable transmission of gene expression patterns to progeny cells throughout development. Several lines of evidence suggest a functional interaction between the PcG and trxG proteins. For example, genetic evidence indicates that the enhancer of zeste [E(z)] gene can be considered both a PcG and a trxGgene. To better understand the molecular interactions in which the E(z) protein is involved, we performed a two-hybrid screen with Enx1/EZH2, a mammalian homolog of E(z), as the target. We report the identification of the human EED protein, which interacts with Enx1/EZH2. EED is the human homolog ofeed, a murine PcG gene which has extensive homology with the Drosophila PcG gene extra sex combs(esc). Enx1/EZH2 and EED coimmunoprecipitate, indicating that they also interact in vivo. However, Enx1/EZH2 and EED do not coimmunoprecipitate with other human PcG proteins, such as HPC2 and BMI1. Furthermore, unlike HPC2 and BMI1, which colocalize in nuclear domains of U-2 OS osteosarcoma cells, Enx1/EZH2 and EED do not colocalize with HPC2 or BMI1. Our findings indicate that Enx1/EZH2 and EED are members of a class of PcG proteins that is distinct from previously described human PcG proteins.


2007 ◽  
Vol 404 (2) ◽  
pp. 235-245 ◽  
Author(s):  
Christine A. Biondi ◽  
Debipriya Das ◽  
Michael Howell ◽  
Ayesha Islam ◽  
Elizabeth K. Bikoff ◽  
...  

Smad4 in partnership with R-Smads (receptor-regulated Smads) activates TGF-β (transforming growth factor-β)-dependent signalling pathways essential for early mouse development. Smad4 null embryos die shortly after implantation due to severe defects in cell proliferation and visceral endoderm differentiation. In the basal state, Smad4 undergoes continuous shuttling between the cytoplasm and the nucleus due to the combined activities of an N-terminal NLS (nuclear localization signal) and an NES (nuclear export signal) located in its linker region. Cell culture experiments suggest that Smad4 nucleocytoplasmic shuttling plays an important role in TGF-β signalling. In the present study we have investigated the role of Smad4 shuttling in vivo using gene targeting to engineer two independent mutations designed to eliminate Smad4 nuclear export. As predicted this results in increased levels of Smad4 in the nucleus of homozygous ES cells (embryonic stem cells) and primary keratinocytes, in the presence or absence of ligand. Neither mutation affects Smad4 expression levels nor its ability to mediate transcriptional activation in homozygous cell lines. Remarkably mouse mutants lacking the Smad4 NES develop normally. Smad4 NES mutants carrying one copy of a Smad4 null allele also fail to display developmental defects. The present study clearly demonstrates that Smad4 nucleocytoplasmic shuttling is not required for embryonic development or tissue homoeostasis in normal, healthy adult mice.


Author(s):  
Antonio Lentini ◽  
Christos Coucoravas ◽  
Nathanael Andrews ◽  
Martin Enge ◽  
Qiaolin Deng ◽  
...  

AbstractMammalian X-chromosome dosage balance is regulated by X-chromosome inactivation (XCI) and X-chromosome upregulation (XCU), but the dynamics of XCU as well as the interplay between the two mechanisms remain poorly understood. Here, we mapped XCU throughout early mouse embryonic development at cellular and allelic resolution, revealing sex- and lineage-specific dynamics along key events in X-chromosome regulation. Our data show that XCU is linearly proportional to the degree of XCI, indicating that dosage compensation ensues based on mRNA levels rather than number of active X chromosomes. In line with this, we reveal that the two active X chromosomes in female naïve embryonic stem cells are not hyperactive as previously thought. In all lineages, XCU was underlain by increased transcriptional burst frequencies, providing a mechanistic basis in vivo. Together, our results demonstrate unappreciated flexibility of XCU in balancing X-chromosome expression, and we propose a general model for allelic dosage balance, applicable for wider mechanisms of transcriptional regulation.


2021 ◽  
Author(s):  
Yezhang Zhu ◽  
Jiali Yu ◽  
Yan Rong ◽  
Yun-Wen Wu ◽  
Heng-Yu Fan ◽  
...  

Polycomb group (PcG) proteins are crucial chromatin regulators during development. H2Aub and H3K27me3 are catalyzed by Polycomb-repressive Complex 1 and 2 (PRC1/2) respectively, and largely overlap in the genome due to mutual recruitment of the two complexes. However, whether PRC1/H2Aub and PRC2/H3K27me3 can function independently remains obscure. Here we uncovered a genome-wide decoupling of H2Aub and H3K27me3 in preimplantation mouse embryos, at both canonical PcG targets and broad distal domains. H2Aub represses future bivalent genes without H3K27me3 but does not contribute to maintenance of H3K27me3-dependent non-canonical imprinting. Our study thus revealed their distinct and independent functions in early mammalian development.


Reproduction ◽  
2020 ◽  
Vol 159 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Wei Cui ◽  
Agnes Cheong ◽  
Yongsheng Wang ◽  
Yuran Tsuchida ◽  
Yong Liu ◽  
...  

Microspherule protein 1 (MCRS1, also known as MSP58) is an evolutionarily conserved protein that has been implicated in various biological processes. Although a variety of functions have been attributed to MCRS1 in vitro, mammalian MCRS1 has not been studied in vivo. Here we report that MCRS1 is essential during early murine development. Mcrs1 mutant embryos exhibit normal morphology at the blastocyst stage but cannot be recovered at gastrulation, suggesting an implantation failure. Outgrowth (OG) assays reveal that mutant blastocysts do not form a typical inner cell mass (ICM) colony, the source of embryonic stem cells (ESCs). Surprisingly, cell death and histone H4 acetylation analysis reveal that apoptosis and global H4 acetylation are normal in mutant blastocysts. However, analysis of lineage specification reveals that while the trophoblast and primitive endoderm are properly specified, the epiblast lineage is compromised and exhibits a severe reduction in cell number. In summary, our study demonstrates the indispensable role of MCRS1 in epiblast development during early mammalian embryogenesis.


2002 ◽  
Vol 22 (6) ◽  
pp. 1919-1925 ◽  
Author(s):  
Susanne C. Bleckmann ◽  
Julie A. Blendy ◽  
Dorothea Rudolph ◽  
A. Paula Monaghan ◽  
Wolfgang Schmid ◽  
...  

ABSTRACT Activating transcription factor 1 (ATF1), CREB, and the cyclic AMP (cAMP) response element modulatory protein (CREM), which constitute a subfamily of the basic leucine zipper transcription factors, activate gene expression by binding as homo- or heterodimers to the cAMP response element in regulatory regions of target genes. To investigate the function of ATF1 in vivo, we inactivated the corresponding gene by homologous recombination. In contrast to CREB-deficient mice, which suffer from perinatal lethality, mice lacking ATF1 do not exhibit any discernible phenotypic abnormalities. Since ATF1 and CREB but not CREM are strongly coexpressed during early mouse development, we generated mice deficient for both CREB and ATF1. ATF1−/− CREB−/− embryos die before implantation due to developmental arrest. ATF1+/− CREB−/− embryos display a phenotype of embryonic lethality around embryonic day 9.5 due to massive apoptosis. These results indicate that CREB and ATF1 act in concert to mediate signals essential for maintaining cell viability during early embryonic development.


2001 ◽  
Vol 21 (23) ◽  
pp. 7933-7943 ◽  
Author(s):  
Yuhong Fan ◽  
Allen Sirotkin ◽  
Robert G. Russell ◽  
Julianna Ayala ◽  
Arthur I. Skoultchi

ABSTRACT H1 linker histones are involved in facilitating the folding of chromatin into a 30-nm fiber. Mice contain eight H1 subtypes that differ in amino acid sequence and expression during development. Previous work showed that mice lacking H10, the most divergent subtype, develop normally. Examination of chromatin in H10−/− mice showed that other H1s, especially H1c, H1d, and H1e, compensate for the loss of H10 to maintain a normal H1-to-nucleosome stoichiometry, even in tissues that normally contain abundant amounts of H10 (A. M. Sirotkin et al., Proc. Natl. Acad. Sci. USA 92:6434–6438, 1995). To further investigate the in vivo role of individual mammalian H1s in development, we generated mice lacking H1c, H1d, or H1e by homologous recombination in mouse embryonic stem cells. Mice lacking any one of these H1 subtypes grew and reproduced normally and did not exhibit any obvious phenotype. To determine whether one of these H1s, in particular, was responsible for the compensation present in H10−/− mice, each of the three H1 knockout mouse lines was bred with H10 knockout mice to generate H1c/H10, H1d/H10, or H1e/H10double-knockout mice. Each of these doubly H1-deficient mice also was fertile and exhibited no anatomic or histological abnormalities. Chromatin from the three double-knockout strains showed no significant change in the ratio of total H1 to nucleosomes. These results suggest that any individual H1 subtype is dispensable for mouse development and that loss of even two subtypes is tolerated if a normal H1-to-nucleosome stoichiometry is maintained. Multiple compound H1 knockouts will probably be needed to disrupt the compensation within this multigene family.


Sign in / Sign up

Export Citation Format

Share Document