scholarly journals Activation of the Bur1-Bur2 Cyclin-Dependent Kinase Complex by Cak1

2002 ◽  
Vol 22 (19) ◽  
pp. 6750-6758 ◽  
Author(s):  
Sheng Yao ◽  
Gregory Prelich

ABSTRACT Cyclin-dependent kinases (Cdks) were originally identified as regulators of eukaryotic cell cycle progression, but several Cdks were subsequently shown to perform important roles as transcriptional regulators. While the mechanisms regulating the Cdks involved in cell cycle progression are well documented, much less is known regarding how the Cdks that are involved in transcription are regulated. In Saccharomyces cerevisiae, Bur1 and Bur2 comprise a Cdk complex that is involved in transcriptional regulation, presumably mediated by its phosphorylation of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II. To investigate the regulation of Bur1 in vivo, we searched for high-copy-number suppressors of a bur1 temperature-sensitive mutation, identifying a single gene, CAK1. Cak1 is known to activate two other Cdks in yeast by phosphorylating a threonine within their conserved T-loop domains. Bur1 also has the conserved threonine within its T loop and is therefore a potential direct target of Cak1. Additional tests establish a direct functional interaction between Cak1 and the Bur1-Bur2 Cdk complex: Bur1 is phosphorylated in vivo, both the conserved Bur1 T-loop threonine and Cak1 are required for phosphorylation and Bur1 function in vivo, and recombinant Cak1 stimulates CTD kinase activity of the purified Bur1-Bur2 complex in vitro. Thus, both genetic and biochemical evidence demonstrate that Cak1 is a physiological regulator of the Bur1 kinase.

2021 ◽  
Vol 12 ◽  
Author(s):  
Qiuyu Jiang ◽  
Jinyuan Zhang ◽  
Fang Li ◽  
Xiaoping Ma ◽  
Fei Wu ◽  
...  

RNA polymerase II subunit A (POLR2A) is the largest subunit encoding RNA polymerase II and closely related to cancer progression. However, the biological role and underlying molecular mechanism of POLR2A in gastric cancer (GC) are still unclear. Our study demonstrated that POLR2A was highly expressed in GC tissue and promoted the proliferation of GC in vitro and in vivo. We also found that POLR2A participated in the transcriptional regulation of cyclins and cyclin-dependent kinases (CDKs) at each stage and promoted their expression, indicated POLR2A’s overall promotion of cell cycle progression. Moreover, POLR2A inhibited GC cell apoptosis and promoted GC cell migration. Our results indicate that POLR2A play an oncogene role in GC, which may be an important factor involved in the occurrence and development of GC.


1999 ◽  
Vol 19 (4) ◽  
pp. 2515-2526 ◽  
Author(s):  
Astrid S. Clarke ◽  
Joanna E. Lowell ◽  
Sandra J. Jacobson ◽  
Lorraine Pillus

ABSTRACT Histones are dynamically modified during chromatin assembly, as specific transcriptional patterns are established, and during mitosis and development. Modifications include acetylation, phosphorylation, ubiquitination, methylation, and ADP-ribosylation, but the biological significance of each of these is not well understood. For example, distinct acetylation patterns correlate with nucleosome formation and with transcriptionally activated or silenced chromatin, yet mutations in genes encoding several yeast histone acetyltransferase (HAT) activities result in either no cellular phenotype or only modest growth defects. Here we report characterization of ESA1, an essential gene that is a member of the MYST family that includes two yeast silencing genes, human genes associated with leukemia and with the human immunodeficiency virus type 1 Tat protein, and Drosophila mof, a gene essential for male dosage compensation. Esa1p acetylates histones in a pattern distinct from those of other yeast enzymes, and temperature-sensitive mutant alleles abolish enzymatic activity in vitro and result in partial loss of an acetylated isoform of histone H4 in vivo. Strains carrying these mutations are also blocked in the cell cycle such that at restrictive temperatures,esa1 mutants succeed in replicating their DNA but fail to proceed normally through mitosis and cytokinesis. Recent studies show that Esa1p enhances transcription in vitro and thus may modulate expression of genes important for cell cycle control. These observations therefore link an essential HAT activity to cell cycle progression, potentially through discrete transcriptional regulatory events.


2002 ◽  
Vol 13 (9) ◽  
pp. 3178-3191 ◽  
Author(s):  
Smita Abbi ◽  
Hiroki Ueda ◽  
Chuanhai Zheng ◽  
Lee Ann Cooper ◽  
Jihe Zhao ◽  
...  

Focal adhesion kinase (FAK) is a major mediator of integrin signaling pathways. The mechanisms of regulation of FAK activity and its associated cellular functions are not very well understood. Here, we present data suggesting that a novel protein FIP200 functions as an inhibitor for FAK. We show the association of endogenous FIP200 with FAK, which is decreased upon integrin-mediated cell adhesion concomitant with FAK activation. In vitro- and in vivo-binding studies indicate that FIP200 interacts with FAK through multiple domains directly. FIP200 bound to the kinase domain of FAK inhibited its kinase activity in vitro and its autophosphorylation in vivo. Overexpression of FIP200 or its segments inhibited cell spreading, cell migration, and cell cycle progression, which correlated with their inhibition of FAK activity in vivo. The inhibition of these cellular functions by FIP200 could be rescued by coexpression of FAK. Last, we show that disruption of the functional interaction between endogenous FIP200 with FAK leads to increased FAK phosphorylation and partial restoration of cell cycle progression in cells plated on poly-l-lysine, providing further support for FIP200 as a negative regulator of FAK. Together, these results identify FIP200 as a novel protein inhibitor for FAK.


Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 354 ◽  
Author(s):  
Mouna Sdiri ◽  
Xiangmin Li ◽  
William Du ◽  
Safia El-Bok ◽  
Yi-Zhen Xie ◽  
...  

The extensive applications of Cynomorium species and their rich bioactive secondary metabolites have inspired many pharmacological investigations. Previous research has been conducted to examine the biological activities and numerous interesting pharmaceutical activities have been reported. However, the antitumor activities of these species are unclear. To understand the potential anticancer activity, we screened Cynomorium coccineum and Cynomorium songaricum using three different extracts of each species. In this study, the selected extracts were evaluated for their ability to decrease survival rates of five different cancer cell lines. We compared the cytotoxicity of the three different extracts to the anticancer drug vinblastine and one of the most well-known medicinal mushrooms Amaurederma rude. We found that the water and alcohol extracts of C. coccineum at the very low concentrations possessed very high capacity in decreasing the cancer cells viability with a potential inhibition of tumorigenesis. Based on these primitive data, we subsequently tested the ethanol and the water extracts of C. coccineum, respectively in in vitro and in vivo assays. Cell cycle progression and induction of programmed cell death were investigated at both biological and molecular levels to understand the mechanism of the antitumor inhibitory action of the C. coccineum. The in vitro experiments showed that the treated cancer cells formed fewer and smaller colonies than the untreated cells. Cell cycle progression was inhibited, and the ethanol extract of C. coccineum at a low concentration induced accumulation of cells in the G1 phase. We also found that the C. coccineum’s extracts suppressed viability of two murine cancer cell lines. In the in vivo experiments, we injected mice with murine cancer cell line B16, followed by peritoneal injection of the water extract. The treatment prolonged mouse survival significantly. The tumors grew at a slower rate than the control. Down-regulation of c-myc expression appeared to be associated with these effects. Further investigation showed that treatment with C. coccineum induced the overexpression of the tumor suppressor Foxo3 and other molecules involved in inducing autophagy. These results showed that the C. coccineum extract exerts its antiproliferative activity through the induction of cell death pathway. Thus, the Cynomorium plants appear to be a promising source of new antineoplastic compounds.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1964 ◽  
Author(s):  
Mengqiu Song ◽  
Shuying Yin ◽  
Ran Zhao ◽  
Kangdong Liu ◽  
Joydeb Kumar Kundu ◽  
...  

Topoisomerase (TOP) I plays a major role in the process of supercoiled DNA relaxation, thereby facilitating DNA replication and cell cycle progression. The expression and enzymatic activity of TOP I is positively correlated with tumor progression. Although the anticancer activity of (S)-10-Hydroxycamptothecin (HCPT), a TOP I specific inhibitor, has been reported in various cancers, the effect of HCPT on esophageal cancer is yet to be examined. In this study, we investigate the potential of HCPT to inhibit the growth of ESCC cells in vitro and verify its anti-tumor activity in vivo by using a patient-derived xenograft (PDX) tumor model in mice. Our study revealed the overexpression of TOP I in ESCC cells and treatment with HCPT inhibited TOP I enzymatic activity at 24 h and decreased expression at 48 h and 72 h. HCPT also induced DNA damage by increasing the expression of H2A.XS139. HCPT significantly decreased the proliferation and anchorage-independent growth of ESCC cells (KYSE410, KYSE510, KYSE30, and KYSE450). Mechanistically, HCPT inhibited the G2/M phase cell cycle transition, decreased the expression of cyclin B1, and elevated p21 expression. In addition, HCPT stimulated ESCC cells apoptosis, which was associated with elevated expression of cleaved PARP, cleaved caspase-3, cleaved caspase-7, Bax, Bim, and inhibition of Bcl-2 expression. HCPT dramatically suppressed PDX tumor growth and decreased the expression of Ki-67 and TOP I and increased the level of cleaved caspase-3 and H2A.XS139 expression. Taken together, our data suggested that HCPT inhibited ESCC growth, arrested cell cycle progression, and induced apoptosis both in vitro and in vivo via decreasing the expression and activity of TOP I enzyme.


2000 ◽  
Vol 20 (4) ◽  
pp. 1134-1139 ◽  
Author(s):  
Elizabeth L. Dunphy ◽  
Theron Johnson ◽  
Scott S. Auerbach ◽  
Edith H. Wang

ABSTRACT The TATA-binding protein (TBP)-associated factor TAFII250 is the largest component of the basal transcription factor IID (TFIID). A missense mutation that maps to the acetyltransferase domain of TAFII250 induces the temperature-sensitive (ts) mutant hamster cell lines ts13 and tsBN462 to arrest in late G1. At the nonpermissive temperature (39.5°C), transcription from only a subset of protein encoding genes, including the G1 cyclins, is dramatically reduced in the mutant cells. Here we demonstrate that the ability of the ts13 allele of TAFII250 to acetylate histones in vitro is temperature sensitive suggesting that this enzymatic activity is compromised at 39.5°C in the mutant cells. Mutagenesis of a putative acetyl coenzyme A binding site produced a TAFII250 protein that displayed significantly reduced histone acetyltransferase activity but retained TBP and TAFII150 binding. Expression of this mutant in ts13 cells was unable to complement the cell cycle arrest or transcriptional defect observed at 39.5°C. These data suggest that TAFII250 acetyltransferase activity is required for cell cycle progression and regulates the expression of essential proliferative control genes.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2571-2571
Author(s):  
Zhi Hong Lu ◽  
Jason T. Books ◽  
Timothy James Ley

Abstract Mammalian proteins containing “cold-shock” domains belong to the most evolutionarily conserved family of nucleic acid-binding proteins known in bacteria, plants, and animals. One of these proteins, YB-1, has been implicated in basic cellular functions such as cell proliferation and responses to environmental stresses. In mammalian cells, YB-1 has been shown to shuttle between the nuclear and cytoplasmic compartments. Within the nucleus, YB-1 interacts with several DNA-and pre-mRNA-binding proteins, and has been implicated in nuclear activities, including transcriptional regulation, chromatin remodeling, and pre-mRNA splicing. YB-1 is also abundant in the cytoplasm, where it binds nonspecifically to mRNA, and may act as a general regulator of mRNA stability, cytoplasmic localization, and translation. Thus, YB-1 has been proposed to function as a multifunctional regulator for the control of gene expression in both the nucleus and cytoplasm. YB-1 overexpression has been frequently detected in a variety of human cancers, often associated with unfavorable clinical outcomes. However, it remains unclear whether YB-1 overexpression contributes directly to the malignant phenotype, or whether it is simply a non-causal “marker” associated with rapid cell growth (and poor prognostic outcomes). To further assess the role of this protein in health and disease, we created mice deficient for YB-1. Complete loss of function of this gene results in fully-penetrant late embryonic and perinatal lethality. Morphological and histological analyses revealed that YB-1−/− embryos displayed major developmental and functional defects, including neurological abnormalities, hemorrhage, and respiratory failure, which probably contributed to lethality. Growth retardation occurred in all late-stage embryos, and was the result of hypoplasia in multiple organ systems. Consistent with these in vivo results, fibroblasts isolated from YB-1−/− embryos (MEFs) grew slowly and entered senescence prematurely in vitro; these defects were rescued by ectopic expression of a GFP-tagged human YB-1 cDNA. This data suggests that YB-1 plays an important cell-autonomous role in cell proliferation and prevention of premature senescence. We further showed that loss of YB-1 in early passage MEFs resulted a delay in G0/G1 to S-phase progression, and a defect in a transcriptional mechanism that normally represses the expression of the G1-specific CDK inhibitor gene p16Ink4a, and the p53 target genes p21Cip1 and Mdm2. However, YB-1 does not cause “global” changes in the transcriptome, the proteome, or protein synthesis efficiency. As predicted, p16Ink4a and p21Cip1 double knockdown by siRNA treatment led to an increase in the rate of cell proliferation, and an extension of proliferative capacity during late passages in YB-1−/− cells. Furthermore, YB-1 deficiency reduced the ability of MEFs to proliferate normally in response to c-Myc overexpression. In conclusion, our data has revealed that YB-1 is required for normal mouse development and survival, and that it plays an important role in supporting rapid cellular proliferation both in vivo and in vitro. Our data further suggests that YB-1 is a cell cycle progression regulator that is important for preventing the early onset of senescence in cultured MEF cells. This data raises the possibility that disregulated expression of YB-1 may contribute to malignant phenotypes by supporting rapid cell cycle progression, and by protecting cells from cytotoxic stresses.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 202-202
Author(s):  
Takafumi Nakao ◽  
Amy E Geddis ◽  
Norma E. Fox ◽  
Kenneth Kaushansky

Abstract Thrombopoietin (TPO), the primary regulator of megakaryocyte (MK) and platelet formation, modulates the activity of multiple signal transduction molecules, including those in the Jak/STAT, p42/p44 MAPK, and phosphatidylinositol 3-kinase (PI3K)/Akt pathways. In the previous study, we reported that PI3K and Akt are necessary for TPO-induced cell cycle progression of primary MK progenitors. The absence of PI3K activity results in a block of transition from G1 to S phase in these cells (Geddis AE et al. JBC2001276:34473–34479). However, the molecular events secondary to the activation of PI3K/Akt responsible for MK proliferation remain unclear. In this study we show that FOXO3a and its downstream target p27Kip1 play an important role in TPO-induced proliferation of MK progenitors. TPO induces phosphorylation of Akt and FOXO3a in both UT-7/TPO, a megakaryocytic cell line, and primary murine MKs in a PI3K dependent fashion. Cell cycle progression of UT-7/TPO cells is blocked in G1 phase by inhibition of PI3K. We found that TPO down-modulates p27Kip1 expression at both the mRNA and protein levels in UT-7/TPO cells and primary MKs in a PI3K dependent fashion. UT-7/TPO stably expressing constitutively active Akt or a dominant-negative form of FOXO3a failed to induce p27Kip1 expression after TPO withdrawal. Induced expression of an active form of FOXO3a resulted in increased p27Kip1 expression in this cell line. In an attempt to assess whether FOXO3a has an effect of MK proliferation in vivo, we compared the number of MKs in Foxo3a-deficient mice and in wild type controls. Although peripheral blood cell counts of erythrocytes, neutrophils, monocytes and platelets were normal in the Foxo3a-deficient mice, total nucleated marrow cell count of Foxo3a-deficient mice were 60% increased compared with wild type controls. In addition, the increase of MKs was more profound than that of total nucleated marrow cells; CD41+ MKs from Foxo3a-deficient mice increased 2.1-fold, and mature MKs with 8N and greater ploidy increased 2.5-fold, compared with wild type controls. Taken together with the previous observation that p27Kip1-deficient mice also display increased numbers of MK progenitors, our findings strongly suggest that the effect of TPO on MK proliferation is mediated by PI3K/Akt-induced FOXO3a inactivation and subsequent p27Kip1 down-regulation in vitro and in vivo.


2001 ◽  
Vol 21 (3) ◽  
pp. 794-810 ◽  
Author(s):  
James S. Foster ◽  
Donald C. Henley ◽  
Antonin Bukovsky ◽  
Prem Seth ◽  
Jay Wimalasena

ABSTRACT Estrogens induce proliferation of estrogen receptor (ER)-positive MCF-7 breast cancer cells by stimulating G1/S transition associated with increased cyclin D1 expression, activation of cyclin-dependent kinases (Cdks), and phosphorylation of the retinoblastoma protein (pRb). We have utilized blockade of cyclin D1-Cdk4 complex formation through adenovirus-mediated expression of p16INK4a to demonstrate that estrogen regulates Cdk inhibitor expression and expression of the Cdk-activating phosphatase Cdc25A independent of cyclin D1-Cdk4 function and cell cycle progression. Expression of p16INK4a inhibited G1/S transition induced in MCF-7 cells by 17-β-estradiol (E2) with associated inhibition of both Cdk4- and Cdk2-associated kinase activities. Inhibition of Cdk2 activity was associated with delayed removal of Cdk-inhibitory activity in early G1 and decreased cyclin A expression. Cdk-inhibitory activity and expression of both p21Cip1 and p27Kip1 was decreased, however, in both control and p16INK4a-expressing cells 20 h after estrogen treatment. Expression of Cdc25A mRNA and protein was induced by E2 in control and p16INK4a-expressing MCF-7 cells; however, functional activity of Cdc25A was inhibited in cells expressing p16INK4a. Inhibition of Cdc25A activity in p16INK4a-expressing cells was associated with depressed Cdk2 activity and was reversed in vivo and in vitro by active Cdk2. Transfection of MCF-7 cells with a dominant-negative Cdk2 construct inhibited the E2-dependent activation of ectopic Cdc25A. Supporting a role for Cdc25A in estrogen action, antisenseCDC25A oligonucleotides inhibited estrogen-induced Cdk2 activation and DNA synthesis. In addition, inactive cyclin E-Cdk2 complexes from p16INK4a-expressing, estrogen-treated cells were activated in vitro by treatment with recombinant Cdc25A and in vivo in cells overexpressing Cdc25A. The results demonstrate that functional association of cyclin D1-Cdk4 complexes is required for Cdk2 activation in MCF-7 cells and that Cdk2 activity is, in turn, required for the in vivo activation of Cdc25A. These studies establish Cdc25A as a growth-promoting target of estrogen action and further indicate that estrogens independently regulate multiple components of the cell cycle machinery, including expression of p21Cip1 and p27Kip1.


Sign in / Sign up

Export Citation Format

Share Document