scholarly journals Human Mitochondrial Transcription Factor B1 Interacts with the C-Terminal Activation Region of h-mtTFA and Stimulates Transcription Independently of Its RNA Methyltransferase Activity

2003 ◽  
Vol 23 (16) ◽  
pp. 5816-5824 ◽  
Author(s):  
Vicki McCulloch ◽  
Gerald S. Shadel

ABSTRACT A significant advancement in understanding mitochondrial gene expression is the recent identification of two new human mitochondrial transcription factors, h-mtTFB1 and h-mtTFB2. Both proteins stimulate transcription in collaboration with the high-mobility group box transcription factor, h-mtTFA, and are homologous to rRNA methyltransferases. In fact, the dual-function nature of h-mtTFB1 was recently demonstrated by its ability to methylate a conserved rRNA substrate. Here, we demonstrate that h-mtTFB1 binds h-mtTFA both in HeLa cell mitochondrial extracts and in direct-binding assays via an interaction that requires the C-terminal tail of h-mtTFA, a region necessary for transcriptional activation. In addition, point mutations in conserved methyltransferase motifs of h-mtTFB1 revealed that it stimulates transcription in vitro independently of S-adenosylmethionine binding and rRNA methyltransferase activity. Furthermore, one mutation (G65A) eliminated the ability of h-mtTFB1 to bind DNA yet did not affect transcriptional activation. These results, coupled with the observation that h-mtTFB1 and human mitochondrial RNA (h-mtRNA) polymerase can also be coimmunoprecipitated, lead us to propose a model in which h-mtTFA demarcates mitochondrial promoter locations and where h-mtTFB proteins bridge an interaction between the C-terminal tail of h-mtTFA and mtRNA polymerase to facilitate specific initiation of transcription. Altogether, these data provide important new insight into the mechanism of transcription initiation in human mitochondria and indicate that the dual functions of h-mtTFB1 can be separated.

2002 ◽  
Vol 22 (4) ◽  
pp. 1116-1125 ◽  
Author(s):  
Vicki McCulloch ◽  
Bonnie L. Seidel-Rogol ◽  
Gerald S. Shadel

ABSTRACT A critical step toward understanding mitochondrial genetics and its impact on human disease is to identify and characterize the full complement of nucleus-encoded factors required for mitochondrial gene expression and mitochondrial DNA (mtDNA) replication. Two factors required for transcription initiation from a human mitochondrial promoter are h-mtRNA polymerase and the DNA binding transcription factor, h-mtTFA. However, based on studies in model systems, the existence of a second human mitochondrial transcription factor has been postulated. Here we report the isolation of a cDNA encoding h-mtTFB, the human homolog of Saccharomyces cerevisiae mitochondrial transcription factor B (sc-mtTFB) and the first metazoan member of this class of transcription factors to which a gene has been assigned. Recombinant h-mtTFB is capable of binding mtDNA in a non-sequence-specific fashion and activates transcription from the human mitochondrial light-strand promoter in the presence of h-mtTFA in vitro. Remarkably, h-mtTFB and its fungal homologs are related in primary sequence to a superfamily of N6 adenine RNA methyltransferases. This observation, coupled with the ability of recombinant h-mtTFB to bind S-adenosylmethionine in vitro, suggests that a structural, and perhaps functional, relationship exists between this class of transcription factors and this family of RNA modification enzymes and that h-mtTFB may perform dual functions during mitochondrial gene expression.


2017 ◽  
Vol 22 (4) ◽  
pp. 378-386
Author(s):  
Tim Bergbrede ◽  
Emily Hoberg ◽  
Nils-Göran Larsson ◽  
Maria Falkenberg ◽  
Claes M. Gustafsson

Mitochondria harbor the oxidative phosphorylation (OXPHOS) system, which under aerobic conditions produces the bulk of cellular adenosine triphosphate (ATP). The mitochondrial genome encodes key components of the OXPHOS system, and it is transcribed by the mitochondrial RNA polymerase, POLRMT. The levels of mitochondrial transcription correlate with the respiratory activity of the cell. Therefore, compounds that can increase or decrease mitochondrial gene transcription may be useful for fine-tuning metabolism and could be used to treat metabolic diseases or certain forms of cancer. We here report the establishment of a novel high-throughput assay technology that has allowed us to screen a library of 430,000 diverse compounds for effects on mitochondrial transcription in vitro. Following secondary screens facilitated by the same assay principle, we identified 55 compounds that efficiently and selectively inhibit mitochondrial transcription and that are active also in cell culture. Our method is easily adaptable to other RNA or DNA polymerases and varying spectroscopic detection technologies.


1999 ◽  
Vol 19 (1) ◽  
pp. 657-670 ◽  
Author(s):  
José A. Enríquez ◽  
Patricio Fernández-Silva ◽  
Nuria Garrido-Pérez ◽  
Manuel J. López-Pérez ◽  
Acisclo Pérez-Martos ◽  
...  

ABSTRACT We have analyzed the influence of in vivo treatment and in vitro addition of thyroid hormone on in organello mitochondrial DNA (mtDNA) transcription and, in parallel, on the in organello footprinting patterns at the mtDNA regions involved in the regulation of transcription. We found that thyroid hormone modulates mitochondrial RNA levels and the mRNA/rRNA ratio by influencing the transcriptional rate. In addition, we found conspicuous differences between the mtDNA dimethyl sulfate footprinting patterns of mitochondria derived from euthyroid and hypothyroid rats at the transcription initiation sites but not at the mitochondrial transcription termination factor (mTERF) binding region. Furthermore, direct addition of thyroid hormone to the incubation medium of mitochondria isolated from hypothyroid rats restored the mRNA/rRNA ratio found in euthyroid rats as well as the mtDNA footprinting patterns at the transcription initiation area. Therefore, we conclude that the regulatory effect of thyroid hormone on mitochondrial transcription is partially exerted by a direct influence of the hormone on the mitochondrial transcription machinery. Particularly, the influence on the mRNA/rRNA ratio is achieved by selective modulation of the alternative H-strand transcription initiation sites and does not require the previous activation of nuclear genes. These results provide the first functional demonstration that regulatory signals, such as thyroid hormone, that modify the expression of nuclear genes can also act as primary signals for the transcriptional apparatus of mitochondria.


2016 ◽  
Vol 2 (8) ◽  
pp. e1600963 ◽  
Author(s):  
Inge Kühl ◽  
Maria Miranda ◽  
Viktor Posse ◽  
Dusanka Milenkovic ◽  
Arnaud Mourier ◽  
...  

Mitochondria are vital in providing cellular energy via their oxidative phosphorylation system, which requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes (mtDNA). Transcription of the circular mammalian mtDNA depends on a single mitochondrial RNA polymerase (POLRMT). Although the transcription initiation process is well understood, it is debated whether POLRMT also serves as the primase for the initiation of mtDNA replication. In the nucleus, the RNA polymerases needed for gene expression have no such role. Conditional knockout of Polrmt in the heart results in severe mitochondrial dysfunction causing dilated cardiomyopathy in young mice. We further studied the molecular consequences of different expression levels of POLRMT and found that POLRMT is essential for primer synthesis to initiate mtDNA replication in vivo. Furthermore, transcription initiation for primer formation has priority over gene expression. Surprisingly, mitochondrial transcription factor A (TFAM) exists in an mtDNA-free pool in the Polrmt knockout mice. TFAM levels remain unchanged despite strong mtDNA depletion, and TFAM is thus protected from degradation of the AAA+ Lon protease in the absence of POLRMT. Last, we report that mitochondrial transcription elongation factor may compensate for a partial depletion of POLRMT in heterozygous Polrmt knockout mice, indicating a direct regulatory role of this factor in transcription. In conclusion, we present in vivo evidence that POLRMT has a key regulatory role in the replication of mammalian mtDNA and is part of a transcriptional mechanism that provides a switch between primer formation for mtDNA replication and mitochondrial gene expression.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


2019 ◽  
Vol 47 (14) ◽  
pp. 7502-7517 ◽  
Author(s):  
Anna V Kotrys ◽  
Dominik Cysewski ◽  
Sylwia D Czarnomska ◽  
Zbigniew Pietras ◽  
Lukasz S Borowski ◽  
...  

AbstractMaintenance of mitochondrial gene expression is crucial for cellular homeostasis. Stress conditions may lead to a temporary reduction of mitochondrial genome copy number, raising the risk of insufficient expression of mitochondrial encoded genes. Little is known how compensatory mechanisms operate to maintain proper mitochondrial transcripts levels upon disturbed transcription and which proteins are involved in them. Here we performed a quantitative proteomic screen to search for proteins that sustain expression of mtDNA under stress conditions. Analysis of stress-induced changes of the human mitochondrial proteome led to the identification of several proteins with poorly defined functions among which we focused on C6orf203, which we named MTRES1 (Mitochondrial Transcription Rescue Factor 1). We found that the level of MTRES1 is elevated in cells under stress and we show that this upregulation of MTRES1 prevents mitochondrial transcript loss under perturbed mitochondrial gene expression. This protective effect depends on the RNA binding activity of MTRES1. Functional analysis revealed that MTRES1 associates with mitochondrial RNA polymerase POLRMT and acts by increasing mitochondrial transcription, without changing the stability of mitochondrial RNAs. We propose that MTRES1 is an example of a protein that protects the cell from mitochondrial RNA loss during stress.


2015 ◽  
Vol 36 (6) ◽  
pp. 913-922 ◽  
Author(s):  
Nallani Vijay Kumar ◽  
Jianbo Yang ◽  
Jitesh K. Pillai ◽  
Swati Rawat ◽  
Carlos Solano ◽  
...  

The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeastSaccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)]in vitroandin vivoand that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.


1991 ◽  
Vol 11 (1) ◽  
pp. 533-543
Author(s):  
R M Mulligan ◽  
P Leon ◽  
V Walbot

Lysed maize mitochondria synthesize RNA in the presence of radioactive nucleoside triphosphates, and this assay was utilized to compare the rates of transcription of seven genes. The rates of incorporation varied over a 14-fold range, with the following rank order: 18S rRNA greater than 26S rRNA greater than atp1 greater than atp6 greater than atp9 greater than cob greater than cox3. The products of run-on transcription hybridized specifically to known transcribed regions and selectively to the antisense DNA strand; thus, the isolated run-on transcription system appears to be an accurate representation of endogenous transcription. Although there were small differences in gene copy abundance, these differences cannot account for the differences in apparent transcription rates; we conclude that promoter strength is the main determinant. Among the protein coding genes, incorporation was greatest for atp1. The most active transcription initiation site of this gene was characterized by hybridization with in vitro-capped RNA and by primer extension analyses. The DNA sequences at this and other transcription initiation sites that we have previously mapped were analyzed with respect to the apparent promoter strengths. We propose that two short sequence elements just upstream of initiation sites form at least a portion of the sequence requirements for a maize mitochondrial promoter. In addition to modulation at the level of transcription, steady-state abundance of protein-coding mRNAs varied over a 20-fold range and did not correlate with transcriptional activity. These observations suggest that posttranscriptional processes are important in the modulation of mRNA abundance.


1993 ◽  
Vol 13 (3) ◽  
pp. 1951-1961
Author(s):  
M A Parisi ◽  
B Xu ◽  
D A Clayton

Human mitochondrial transcription factor A is a 25-kDa protein that binds immediately upstream of the two major mitochondrial promoters, thereby leading to correct and efficient initiation of transcription. Although the nature of yeast mitochondrial promoters is significantly different from that of human promoters, a potential functional homolog of the human transcriptional activator protein has been previously identified in yeast mitochondria. The importance of the yeast protein in yeast mitochondrial DNA function has been shown by inactivation of its nuclear gene (ABF2) in Saccharomyces cerevisiae cells resulting in loss of mitochondrial DNA. We report here that the nuclear gene for human mitochondrial transcription factor A can be stably expressed in yeast cells devoid of the yeast homolog protein. The human protein is imported efficiently into yeast mitochondria, is processed correctly, and rescues the loss-of-mitochondrial DNA phenotype in a yeast abf2 strain, thus functionally substituting for the yeast protein. Both human and yeast proteins affect yeast mitochondrial transcription initiation in vitro, suggesting that the two proteins may have a common role in this fundamental process.


1990 ◽  
Vol 10 (6) ◽  
pp. 2832-2839
Author(s):  
A S Ponticelli ◽  
K Struhl

The promoter region of the Saccharomyces cerevisiae his3 gene contains two TATA elements, TC and TR, that direct transcription initiation to two sites designated +1 and +13. On the basis of differences between their nucleotide sequences and their responsiveness to upstream promoter elements, it has previously been proposed that TC and TR promote transcription by different molecular mechanisms. To begin a study of his3 transcription in vitro, we used S. cerevisiae nuclear extracts together with various DNA templates and transcriptional activator proteins that have been characterized in vivo. We demonstrated accurate transcription initiation in vitro at the sites used in vivo, transcriptional activation by GCN4, and activation by a GAL4 derivative on various gal-his3 hybrid promoters. In all cases, transcription stimulation was dependent on the presence of an acidic activation region in the activator protein. In addition, analysis of promoters containing a variety of TR derivatives indicated that the level of transcription in vitro was directly related to the level achieved in vivo. The results demonstrated that the in vitro system accurately reproduced all known aspects of in vivo his3 transcription that depend on the TR element. However, in striking contrast to his3 transcription in vivo, transcription in vitro yielded approximately 20 times more of the +13 transcript than the +1 transcript. This result was not due to inability of the +1 initiation site to be efficiently utilized in vitro, but rather it reflects the lack of TC function in vitro. The results support the idea that TC and TR mediate transcription from the wild-type promoter by distinct mechanisms.


Sign in / Sign up

Export Citation Format

Share Document