scholarly journals Targeted Expression of the Class II Phosphoinositide 3-Kinase in Drosophila melanogaster Reveals Lipid Kinase-Dependent Effects on Patterning and Interactions with Receptor Signaling Pathways

2004 ◽  
Vol 24 (2) ◽  
pp. 796-808 ◽  
Author(s):  
Lindsay K. MacDougall ◽  
Mary Elizabeth Gagou ◽  
Sally J. Leevers ◽  
Ernst Hafen ◽  
Michael D. Waterfield

ABSTRACT Phosphoinositide 3-kinases (PI3Ks) can be divided into three distinct classes (I, II, and III) on the basis of their domain structures and the lipid signals that they generate. Functions have been assigned to the class I and class III enzymes but have not been established for the class II PI3Ks. We have obtained the first evidence for a biological function for a class II PI3K by expressing this enzyme during Drosophila melanogaster development and by using deficiencies that remove the endogenous gene. Wild-type and catalytically inactive PI3K_68D transgenes have opposite effects on the number of sensory bristles and on wing venation phenotypes induced by modified epidermal growth factor (EGF) receptor signaling. These results indicate that the endogenous PI3K_68D may act antagonistically to the EGF receptor-stimulated Ras-mitogen-activated protein kinase pathway and downstream of, or parallel to, the Notch receptor. A class II polyproline motif in PI3K_68D can bind the Drk adaptor protein in vitro, primarily via the N-terminal SH3 domain of Drk. Drk may thus be important for the localization of PI3K_68D, allowing it to modify signaling pathways downstream of cell surface receptors. The phenotypes obtained are markedly distinct from those generated by expression of the Drosophila class I PI3K, which affects growth but not pattern formation.

2006 ◽  
Vol 26 (2) ◽  
pp. 389-401 ◽  
Author(s):  
Lene E. Johannessen ◽  
Nina Marie Pedersen ◽  
Ketil Winther Pedersen ◽  
Inger Helene Madshus ◽  
Espen Stang

ABSTRACT In HeLa cells depleted of adaptor protein 2 complex (AP2) by small interfering RNA (siRNA) to the μ2 or α subunit or by transient overexpression of an AP2 sequestering mutant of Eps15, endocytosis of the transferrin receptor (TfR) was strongly inhibited. However, epidermal growth factor (EGF)-induced endocytosis of the EGF receptor (EGFR) was inhibited only in cells where the α subunit had been knocked down. By immunoelectron microscopy, we found that in AP2-depleted cells, the number of clathrin-coated pits was strongly reduced. When such cells were incubated with EGF, new coated pits were formed. These contained EGF, EGFR, clathrin, and Grb2 but not the TfR. The induced coated pits contained the α subunit, but labeling density was reduced compared to control cells. Induction of clathrin-coated pits required EGFR kinase activity. Overexpression of Grb2 with inactivating point mutations in N- or C-terminal SH3 domains or in both SH3 domains inhibited EGF-induced formation of coated pits efficiently, even though Grb2 SH3 mutations did not block activation of mitogen-activated protein kinase (MAPK) or phosphatidylinositol 3-kinase (PI3K). Our data demonstrate that EGFR-induced signaling and Grb2 are essential for formation of clathrin-coated pits accommodating the EGFR, while activation of MAPK and PI3K is not required.


Blood ◽  
2005 ◽  
Vol 105 (12) ◽  
pp. 4604-4612 ◽  
Author(s):  
Wei Tong ◽  
Jing Zhang ◽  
Harvey F. Lodish

Abstract Erythropoietin (Epo), along with its receptor EpoR, is the principal regulator of red cell development. Upon Epo addition, the EpoR signaling through the Janus kinase 2 (JAK2) activates multiple pathways including Stat5, phosphoinositide-3 kinase (PI-3K)/Akt, and p42/44 mitogen-activated protein kinase (MAPK). The adaptor protein Lnk is implicated in cytokine receptor signaling. Here, we showed that Lnk-deficient mice have elevated numbers of erythroid progenitors, and that splenic erythroid colony-forming unit (CFU-e) progenitors are hypersensitive to Epo. Lnk-/- mice also exhibit superior recovery after erythropoietic stress. In addition, Lnk deficiency resulted in enhanced Epo-induced signaling pathways in splenic erythroid progenitors. Conversely, Lnk overexpression inhibits Epo-induced cell growth in 32D/EpoR cells. In primary culture of fetal liver cells, Lnk overexpression inhibits Epo-dependent erythroblast differentiation and induces apoptosis. Lnk blocks 3 major signaling pathways, Stat5, Akt, and MAPK, induced by Epo in primary erythroblasts. In addition, the Lnk Src homology 2 (SH2) domain is essential for its inhibitory function, whereas the conserved tyrosine near the C-terminus and the pleckstrin homology (PH) domain of Lnk are not critical. Furthermore, wild-type Lnk, but not the Lnk SH2 mutant, becomes tyrosine-phosphorylated following Epo administration and inhibits EpoR phosphorylation and JAK2 activation. Hence, Lnk, through its SH2 domain, negatively modulates EpoR signaling by attenuating JAK2 activation, and regulates Epo-mediated erythropoiesis. (Blood. 2005; 105:4604-4612)


1995 ◽  
Vol 15 (12) ◽  
pp. 6829-6837 ◽  
Author(s):  
M Tanaka ◽  
R Gupta ◽  
B J Mayer

SH2/SH3 adapters are thought to function in signal transduction pathways by coupling inputs from tyrosine kinases to downstream effectors such as Ras. Members of the mitogen-activated protein kinase family are known to be activated by a variety of mitogenic stimuli, including tyrosine kinases such as Abl and the epidermal growth factor (EGF) receptor. We have used activation of the mitogen-activated protein kinase Erk-1 as a model system with which to examine whether various dominant-negative SH2/SH3 adapters (Grb2, Crk, and Nck) could block signaling pathways leading to Erk activation. Activation of Erk-1 by oncogenic Abl was effectively inhibited by Grb2 with mutations in either its SH2 or SH3 domain or by Crk-1 with an SH3 domain mutation. The Crk-1 SH2 mutant was less effective, while Nck SH2 and SH3 mutants had little or no effect on Erk activation. These results suggest that both Crk and Grb2 may contribute to the activation of Erk by oncogenic Abl, whereas Nck is unlikely to participate in this pathway. Next we examined whether combinations of these dominant-negative adapters could inhibit Erk activation more effectively than each mutant alone. When combinations of Crk-1 and Grb2 mutants were analyzed, the combination of the Crk-1 SH3 mutant plus the Grb2 SH3 mutant gave a striking synergistic effect. This finding suggests that in Abl-transformed cells, more than one class of tyrosine-phosphorylated sites (those that bind the Grb2 SH2 domain and those that bind the Crk SH2 domain) can lead to Ras activation. In contrast to results with Abl, Erk activation by EGF was strongly inhibited only by Grb2 mutants; Crk and Nck mutants had little or no effect. This finding suggests that Grb2 is the only adapter involved in the activation of Erk by EGF. Dominant-negative adaptors provide a novel means to identify binding interactions important in vivo for signaling in response to a variety of stimuli.


1993 ◽  
Vol 120 (5) ◽  
pp. 1271-1279 ◽  
Author(s):  
E Kuivinen ◽  
B L Hoffman ◽  
P A Hoffman ◽  
C R Carlin

Receptor tyrosine kinases (RTKs) are grouped into subcategories based on shared sequence and structural features. Human group C adenoviruses down-regulate EGF receptors, which are members of the class I family of RTKs, during the early stages of infection. Adenovirus appears to utilize a nonsaturable intracellular pathway since it causes EGF-R down-regulation even in cells that significantly overexpress EGF-R. Adenovirus-induced down-regulation is mediated by a small hydrophobic molecule coded for by the E3 early transcription region that has recently been localized to plasma membrane. Here we examine intracellular trafficking of other RTKs in adenovirus-infected cells, to better understand the molecular basis for the action of the E3 protein. Although p185c-neu, which is a class I RTK closely related to the EGF receptor, is down-regulated in cells expressing physiological concentrations of this molecule, it is not down-regulated in tumor cell lines that significantly overexpress p185c-neu. Cell surface receptors for insulin and IGF1, which are class II RTKs, are also reduced in cells expressing the E3 protein, although to a slightly lesser extent than the EGF receptor. Moreover, whereas EGF receptors are degraded between 3- and 9-h postinfection, insulin and IGF1 receptors are degraded between 6- and 12-h postinfection under identical conditions. In contrast to the class I and class II RTKs, there is no difference in the expression of the class III receptors for PDGF and aFGF in cells infected with a virus with an intact E3 region versus a virus mutant with an internal deletion in the relevant E3 gene. These results suggest that the E3 protein provides an internalization and degradative sorting signal for some class I and class II RTKs, although down-regulation of class II RTKs is somewhat less efficient. Molecular recognition of class I and class II RTKs during adenovirus infection may not be due strictly to amino acid structure, however, since EGF-R but not p185c-neu is down-regulated in cells where it is significantly overexpressed.


2006 ◽  
Vol 17 (9) ◽  
pp. 3729-3744 ◽  
Author(s):  
Roy M. Katso ◽  
Olivier E. Pardo ◽  
Andrea Palamidessi ◽  
Clemens M. Franz ◽  
Marin Marinov ◽  
...  

Receptor-linked class I phosphoinositide 3-kinases (PI3Ks) induce assembly of signal transduction complexes through protein–protein and protein–lipid interactions that mediate cell proliferation, survival, and migration. Although class II PI3Ks have the potential to make the same phosphoinositides as class I PI3Ks, their precise cellular role is currently unclear. In this report, we demonstrate that class II phosphoinositide 3-kinase C2β (PI3KC2β) associates with the Eps8/Abi1/Sos1 complex and is recruited to the EGF receptor as part of a multiprotein signaling complex also involving Shc and Grb2. Increased expression of PI3KC2β stimulated Rac activity in A-431 epidermoid carcinoma cells, resulting in enhanced membrane ruffling and migration speed of the cells. Conversely, expression of dominant negative PI3KC2β reduced Rac activity, membrane ruffling, and cell migration. Moreover, PI3KC2β-overexpressing cells were protected from anoikis and displayed enhanced proliferation, independently of Rac function. Taken together, these findings suggest that PI3KC2β regulates the migration and survival of human tumor cells by distinct molecular mechanisms.


2018 ◽  
Vol 61 (1) ◽  
pp. T69-T86 ◽  
Author(s):  
Fumihiko Hakuno ◽  
Shin-Ichiro Takahashi

Insulin-like growth factors (IGFs) bind specifically to the IGF1 receptor on the cell surface of targeted tissues. Ligand binding to the α subunit of the receptor leads to a conformational change in the β subunit, resulting in the activation of receptor tyrosine kinase activity. Activated receptor phosphorylates several substrates, including insulin receptor substrates (IRSs) and Src homology collagen (SHC). Phosphotyrosine residues in these substrates are recognized by certain Src homology 2 (SH2) domain-containing signaling molecules. These include, for example, an 85 kDa regulatory subunit (p85) of phosphatidylinositol 3-kinase (PI 3-kinase), growth factor receptor-bound 2 (GRB2) and SH2-containing protein tyrosine phosphatase 2 (SHP2/Syp). These bindings lead to the activation of downstream signaling pathways, PI 3-kinase pathway and Ras-mitogen-activated protein kinase (MAP kinase) pathway. Activation of these signaling pathways is known to be required for the induction of various bioactivities of IGFs, including cell proliferation, cell differentiation and cell survival. In this review, the well-established IGF1 receptor signaling pathways required for the induction of various bioactivities of IGFs are introduced. In addition, we will discuss how IGF signals are modulated by the other extracellular stimuli or by themselves based on our studies.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2746-2746
Author(s):  
Claudia Chiriches ◽  
Dilawar Khan ◽  
Nathalie Guillen ◽  
Michal Rokicki ◽  
Carol Guy ◽  
...  

Abstract Resistance to therapy including potent and selective targeted agents remains the major clinical challenge in AML. In fact, allogeneic stem cell transplantation remains the best curative treatment option for AML patients with high-risk features. This unmet clinical need may be addressed by novel approaches based on targeting networks of activated cancer signaling pathways (NACSPs) instead of only individual pathways. Signaling pathway activation in AML is not only related to class I mutations such as FLT3-ITD, but also to class II driver mutations. This is best exemplified by AML subtypes harboring non-random chromosomal aberrations, encoding driver mutations able to induce and maintain leukemia. Despite the contribution of class I mutations to a poor prognosis, targeting these lesions does not decisively contribute to the cure of AML in the great majority of the cases. AML with the translocation t(6;9)(p23;q34) encoding the related DEK/NUP214 fusion protein is a high risk group of AML patients characterized by young age and presence of FLT3-ITD in ~ 75% of the cases, which responds only transiently to FLT3-ITD inhibitors. Using this AML subtype as a model for high risk disease, we investigated the NACSPs activated by a class II driver mutation. In these patients FLT3-ITD represents the only established recurrent genetic aberration at diagnosis in addition to the t(6;9). We have shown that the driver mutation DEK/NUP214 transforms very immature hematopoietic stem cells with the contribution of activated STAT5, present also in FLT3-ITD-negative patients. Furthermore it has been reported that AKT/mTOR is activated in DEK/NUP214-positive cells. Here we investigated whether these signaling pathways are components of a leukemogenic NACSP and are therapeutically/clinically significant. We used different inhibitors to target either selectively or to determine a inhibition pattern of a.) PI3K/AKT/mTOR signaling (BKM120, BEZ2315, RAD001, Torin1 and AZD1208) at different levels; b.) receptor tyrosine kinases (RTK- ruxolitinib, sorafenib); and c.) members of the SRC kinase family (dasatinib, ponatinib, PF114, PP2). We employed four different models of t(6;9)-positive AML: U937 cells stably transfected with DEK/NUP214, t(6;9)-positive FKH1 cells, syngeneic DEK/NUP214-driven murine AML cells and primary t(6,9)-positive AML cells. Here we show that i.) STAT5 and AKT/mTOR activation was genetically determined by the t(6;9)-DEK/NUP214; ii.) STAT5 and AKT/mTOR activation were independent of JAK2 and PI3K activation, respectively; iii) selective inhibition of the AKT/mTOR cascades strongly increased STAT5 activation; iv.) both signaling pathways form a NACP, with activated members of the SRC kinase family (SKF - LYN and SRC) as a central node; v.) the NACSP was effectively targeted by inhibitors of the SRC-kinase activity (SKI) such as dasatinib, ponatinib, PF114 and the selective SKF inhibitor PP2, resulting in cell growth arrest and induction of apoptosis in t(6;9)-positive leukemic cells; vi.) SKI not only inhibited SKF/STAT5 but also the AKT/mTOR cascade; vii.) this NACP was independent of the activation of RTKs such as PDGFR, KDR, c-KIT, FLT3 a.o, as part of the target profile of many SKIs used above, as shown by the lack of activity of inhibitors such as ruxolitinib, sorafenib or ibrutinib; viii.) addition of AKT/mTOR inhibitors strongly increased effects of low dose dasatinib or ponatinib in primary t(6;9) leukaemic cells. Our findings implicate the t(6;9)-DEK/NUP214 oncogene as a central inductor of an NACSP including SFK, AKT/mTOR and STAT5 which is independent of the recurrent FLT3-ITD signaling in these patients. This NACSP is able to maintain the leukemia in the presence of effective inhibition of FLT3-ITD signaling by Sorafenib, AC220 and other inhibitors in clinical use. Furthermore, the increase of STAT5 activation upon AKT/mTOR inhibition, suggests that the use of such a treatment would not lead to the eradication of the disease, because of the role of activated STAT5 in the maintenance of leukemic stem cells. On the other hand, SKIs target the entire NACSP. In fact, hitting the central node of the NACSP abolished the activation of both STAT5 and AKT/mTOR. Taken together these data establish SKIs as a valid therapeutic concept not only in t(6;9)-positive AMLs but also in all other AML subtypes characterised by the same NACSP. Disclosures Ottmann: Pfizer: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Fusion Pharma: Consultancy, Honoraria; Novartis: Consultancy, Honoraria; Ariad: Consultancy, Honoraria.


2016 ◽  
Vol 113 (26) ◽  
pp. 7243-7248 ◽  
Author(s):  
Yanmeng Guo ◽  
Yuping Wang ◽  
Wei Zhang ◽  
Shan Meltzer ◽  
Damiano Zanini ◽  
...  

Drosophila larval locomotion, which entails rhythmic body contractions, is controlled by sensory feedback from proprioceptors. The molecular mechanisms mediating this feedback are little understood. By using genetic knock-in and immunostaining, we found that the Drosophila melanogaster transmembrane channel-like (tmc) gene is expressed in the larval class I and class II dendritic arborization (da) neurons and bipolar dendrite (bd) neurons, both of which are known to provide sensory feedback for larval locomotion. Larvae with knockdown or loss of tmc function displayed reduced crawling speeds, increased head cast frequencies, and enhanced backward locomotion. Expressing Drosophila TMC or mammalian TMC1 and/or TMC2 in the tmc-positive neurons rescued these mutant phenotypes. Bending of the larval body activated the tmc-positive neurons, and in tmc mutants this bending response was impaired. This implicates TMC’s roles in Drosophila proprioception and the sensory control of larval locomotion. It also provides evidence for a functional conservation between Drosophila and mammalian TMCs.


2004 ◽  
Vol 200 (5) ◽  
pp. 569-580 ◽  
Author(s):  
Wei Tong ◽  
Harvey F. Lodish

Thrombopoietin (Tpo) is the primary cytokine regulating megakaryocyte development and platelet production. Tpo signaling through its receptor, c-mpl, activates multiple pathways including signal transducer and activator of transcription (STAT)3, STAT5, phosphoinositide 3-kinase–Akt, and p42/44 mitogen-activated protein kinase (MAPK). The adaptor protein Lnk is implicated in cytokine receptor and immunoreceptor signaling. Here, we show that Lnk overexpression negatively regulates Tpo-mediated cell proliferation and endomitosis in hematopoietic cell lines and primary hematopoietic cells. Lnk attenuates Tpo-induced S-phase progression in 32D cells expressing mpl, and Lnk decreases Tpo-dependent megakaryocyte growth in bone marrow (BM)–derived megakaryocyte culture. Consistent with this result, we found that in both BM and spleen, Lnk-deficient mice exhibited increased numbers of megakaryocytes with increased ploidy compared with wild-type mice. In addition, Lnk-deficient megakaryocytes derived from BM and spleen showed enhanced sensitivity to Tpo during culture. The absence of Lnk caused enhanced and prolonged Tpo induction of STAT3, STAT5, Akt, and MAPK signaling pathways in CD41+ megakaryocytes. Furthermore, the Src homology 2 domain of Lnk is essential for Lnk's inhibitory function. In contrast, the conserved tyrosine near the COOH terminus is dispensable and the pleckstrin homology domain of Lnk contributes to, but is not essential for, inhibiting Tpo-dependent 32D cell growth or megakaryocyte development. Thus, Lnk negatively modulates mpl signaling pathways and is important for Tpo-mediated megakaryocytopoiesis in vivo.


Sign in / Sign up

Export Citation Format

Share Document