scholarly journals Role for SUMO Modification in Facilitating Transcriptional Repression by BKLF

2005 ◽  
Vol 25 (4) ◽  
pp. 1549-1559 ◽  
Author(s):  
José Perdomo ◽  
Alexis Verger ◽  
Jeremy Turner ◽  
Merlin Crossley

ABSTRACT Small ubiquitin-like modifier (SUMO) is a protein moiety that is ligated to lysine residues on a variety of target proteins. Many known SUMO substrates are transcription factors or coregulators of transcription, and in most cases, modification with SUMO leads to the attenuation of transcriptional activation. We have examined basic Krüppel-like factor/Krüppel-like factor 3 (BKLF), a zinc finger transcription factor that is known to function as a potent transcriptional repressor. We show that BKLF recruits the E2 SUMO-conjugating enzyme Ubc9 and can be modified by the addition of SUMO-1 in vitro and in vivo. The SUMO E3 ligases PIAS1, PIASγ, PIASxα, and PIASxβ but not Pc2 enhance the sumoylation of BKLF. Site-directed mutagenesis identified two lysines (K10 and K197) of BKLF as the sumoylation sites. Sumoylation does not detectably affect DNA binding by BKLF, but mutation of the sumoylation sites reduces transcriptional repression activity. Most interestingly, when mutations preventing sumoylation are combined with an additional mutation that eliminates contact with the C-terminal binding protein (CtBP) corepressor, BKLF becomes an activator of transcription. These results link SUMO modification to transcriptional repression and demonstrate that both recruitment of CtBP and sumoylation are required for full repression by BKLF.

1993 ◽  
Vol 13 (4) ◽  
pp. 2091-2103
Author(s):  
S Türkel ◽  
P J Farabaugh

Transcription of the Ty2-917 retrotransposon of Saccharomyces cerevisiae is modulated by a complex set of positive and negative elements, including a negative region located within the first open reading frame, TYA2. The negative region includes three downstream repression sites (DRSI, DRSII, and DRSIII). In addition, the negative region includes at least two downstream activation sites (DASs). This paper concerns the characterization of DASI. A 36-bp DASI oligonucleotide acts as an autonomous transcriptional activation site and includes two sequence elements which are both required for activation. We show that these sites bind in vitro the transcriptional activation protein GCN4 and that their activity in vivo responds to the level of GCN4 in the cell. We have termed the two sites GCN4 binding sites (GBS1 and GBS2). GBS1 is a high-affinity GCN4 binding site (dissociation constant, approximately 25 nM at 30 degrees C), binding GCN4 with about the affinity of a consensus UASGCN4, this though GBS1 includes two differences from the right half of the palindromic consensus site. GBS2 is more diverged from the consensus and binds GCN4 with about 20-fold-lower affinity. Nucleotides 13 to 36 of DASI overlap DRSII. Since DRSII is a transcriptional repression site, we tested whether DASI includes repression elements. We identify two sites flanking GBS2, both of which repress transcription activated by the consensus GCN4-specific upstream activation site (UASGCN4). One of these is repeated in the 12 bp immediately adjacent to DASI. Thus, in a 48-bp region of Ty2-917 are interspersed two positive and three negative transcriptional regulators. The net effect of the region must depend on the interaction of the proteins bound at these sites, which may include their competing for binding sites, and on the physiological control of the activity of these proteins.


2005 ◽  
Vol 25 (1) ◽  
pp. 324-335 ◽  
Author(s):  
Ho-Geun Yoon ◽  
Youngsok Choi ◽  
Philip A. Cole ◽  
Jiemin Wong

ABSTRACT A central question in histone code theory is how various codes are recognized and utilized in vivo. Here we show that TBL1 and TBLR1, two WD-40 repeat proteins in the corepressor SMRT/N-CoR complexes, are functionally redundant and essential for transcriptional repression by unliganded thyroid hormone receptors (TR) but not essential for transcriptional activation by liganded TR. TBL1 and TBLR1 bind preferentially to hypoacetylated histones H2B and H4 in vitro and have a critical role in targeting the corepressor complexes to chromatin in vivo. We show that targeting SMRT/N-CoR complexes to the deiodinase 1 gene (D1) requires at least two interactions, one between unliganded TR and SMRT/N-CoR and the other between TBL1/TBLR1 and hypoacetylated histones. Neither interaction alone is sufficient for the stable association of the corepressor complexes with the D1 promoter. Our data support a feed-forward working model in which deacetylation exerted by initial unstable recruitment of SMRT/N-CoR complexes via their interaction with unliganded TR generates a histone code that serves to stabilize their own recruitment. Similarly, we find that targeting of the Sin3 complex to pericentric heterochromatin may also follow this model. Our studies provide an in vivo example that a histone code is not read independently but is recognized in the context of other interactions.


2008 ◽  
Vol 181 (6) ◽  
pp. 959-972 ◽  
Author(s):  
Xueni Li ◽  
Mei Huang ◽  
Huiling Zheng ◽  
Yinyin Wang ◽  
Fangli Ren ◽  
...  

Runx2, an essential transactivator for osteoblast differentiation, is tightly regulated at both the transcriptional and posttranslational levels. In this paper, we report that CHIP (C terminus of Hsc70-interacting protein)/STUB1 regulates Runx2 protein stability via a ubiquitination-degradation mechanism. CHIP interacts with Runx2 in vitro and in vivo. In the presence of increased Runx2 protein levels, CHIP expression decreases, whereas the expression of other E3 ligases involved in Runx2 degradation, such as Smurf1 or WWP1, remains constant or increases during osteoblast differentiation. Depletion of CHIP results in the stabilization of Runx2, enhances Runx2-mediated transcriptional activation, and promotes osteoblast differentiation in primary calvarial cells. In contrast, CHIP overexpression in preosteoblasts causes Runx2 degradation, inhibits osteoblast differentiation, and instead enhances adipogenesis. Our data suggest that negative regulation of the Runx2 protein by CHIP is critical in the commitment of precursor cells to differentiate into the osteoblast lineage.


2004 ◽  
Vol 78 (12) ◽  
pp. 6459-6468 ◽  
Author(s):  
Jeffrey S. Johnson ◽  
Yvonne N. Osheim ◽  
Yuming Xue ◽  
Margaux R. Emanuel ◽  
Peter W. Lewis ◽  
...  

ABSTRACT Adenovirus protein VII is the major protein component of the viral nucleoprotein core. It is highly basic, and an estimated 1070 copies associate with each viral genome, forming a tightly condensed DNA-protein complex. We have investigated DNA condensation, transcriptional repression, and specific protein binding by protein VII. Xenopus oocytes were microinjected with mRNA encoding HA-tagged protein VII and prepared for visualization of lampbrush chromosomes. Immunostaining revealed that protein VII associated in a uniform manner across entire chromosomes. Furthermore, the chromosomes were significantly condensed and transcriptionally silenced, as judged by the dramatic disappearance of transcription loops characteristic of lampbrush chromosomes. During infection, the protein VII-DNA complex may be the initial substrate for transcriptional activation by cellular factors and the viral E1A protein. To investigate this possibility, mRNAs encoding E1A and protein VII were comicroinjected into Xenopus oocytes. Interestingly, whereas E1A did not associate with chromosomes in the absence of protein VII, expression of both proteins together resulted in significant association of E1A with lampbrush chromosomes. Binding studies with proteins produced in bacteria or human cells or by in vitro translation showed that E1A and protein VII can interact in vitro. Structure-function analysis revealed that an N-terminal region of E1A is responsible for binding to protein VII. These studies define the in vivo functions of protein VII in DNA binding, condensation, and transcriptional repression and indicate a role in E1A-mediated transcriptional activation of viral genes.


2005 ◽  
Vol 79 (9) ◽  
pp. 5594-5605 ◽  
Author(s):  
Mozhgan Rasti ◽  
Roger J. A. Grand ◽  
Joe S. Mymryk ◽  
Phillip H. Gallimore ◽  
Andrew S. Turnell

ABSTRACT The N-terminal region of the adenovirus (Ad) 12S E1A gene product targets several cellular proteins that are essential for the induction of S phase, cellular immortalization, cellular transformation, transcriptional repression, and transcriptional activation. The precise binding sites for these proteins, however, remain to be resolved. We therefore undertook an extensive site-directed mutagenesis approach to generate specific point mutants and to precisely map the binding sites for CBP, p300, TATA-binding protein (TBP), S4, S8, hGcn5, P/CAF, and Ran within the first 30 amino acids of the Ad5 12S E1A protein. We determined that although common residues within the N-terminal region can form partial binding sites for these proteins, point mutants were also generated that could discriminate between binding sites. These data indicate that AdE1A can target each of these proteins individually through distinct binding sites. It was evident, however, that the mutation of specific hydrophobic residues typically had the greatest effect upon AdE1A's ability to bind individual partners. Indeed, the mutation of L at positions 19 and 20 eliminated the ability of AdE1A to interact with any of the N-terminal binding proteins studied here. Interestingly, although TBP and S8 or CBP/p300 can exist as functional complexes, RNA interference revealed that the recruitment of either TBP, S8, or CBP/p300 to AdE1A was not dependent upon the expression of the other proteins. These data further indicate that AdE1A can target individual partner proteins in vivo and that it does not necessarily recruit these proteins indirectly as components of larger macromolecular complexes. Finally, we took advantage of the fine-mapping data to ascertain which proteins were targeted during the transformation process. Consistent with previous studies, CBP/p300 was found to be targeted by AdE1A during this process, although our data suggest that binding to other N-terminal proteins is also important for transformation.


Blood ◽  
2006 ◽  
Vol 108 (10) ◽  
pp. 3237-3244 ◽  
Author(s):  
Li Song ◽  
Samita Bhattacharya ◽  
Ali A. Yunus ◽  
Christopher D. Lima ◽  
Christian Schindler

Abstract Many proteins are known to undergo small ubiquitin-related modifier (SUMO) modification by an E1-, E2-, and E3-dependent ligation process. Recognition that protein inhibitor of activated signal transducers and activators of transcription (STATs) (PIAS) proteins are SUMO E3 ligases raised the possibility that STATs may also be regulated by SUMO modification. Consistent with this possibility, a SUMO-ylation consensus site (ΨKxE; Ψ indicates hydrophobic residue, and x indicates any residue) was identified in Stat1 (ie, 702IKTE705), but not in other STATs. Biochemical analysis confirmed that Stat1 K703 could be SUMO modified in vitro. Mutation of this critical lysine (ie, Stat1K703R) yielded a protein that, when expressed in Stat1–/– mouse embryonic fibroblasts (MEFs), exhibited enhanced DNA binding and nuclear retention. This was associated with modest changes in transcriptional and antiviral activity. However, mutation of the second critical residue in the SUMO consensus site, E705 (ie, Stat1E705A), yielded a protein with wild-type DNA binding, nuclear retention, and transcriptional and antiviral activity. Similar observations were made when these mutants were expressed in primary Stat1–/– macrophages. These observations suggest that although Stat1 can uniquely be SUMO-ylated in vitro, this modification is unlikely to play an important role in regulating Stat1 activity in vivo.


2017 ◽  
Vol 114 (30) ◽  
pp. 8107-8112 ◽  
Author(s):  
Raquel Martin-Arevalillo ◽  
Max H. Nanao ◽  
Antoine Larrieu ◽  
Thomas Vinos-Poyo ◽  
David Mast ◽  
...  

Transcriptional repression involves a class of proteins called corepressors that link transcription factors to chromatin remodeling complexes. In plants such asArabidopsis thaliana, the most prominent corepressor is TOPLESS (TPL), which plays a key role in hormone signaling and development. Here we present the crystallographic structure of theArabidopsisTPL N-terminal region comprising the LisH and CTLH (C-terminal to LisH) domains and a newly identified third region, which corresponds to a CRA domain. Comparing the structure of TPL with the mammalian TBL1, which shares a similar domain structure and performs a parallel corepressor function, revealed that the plant TPLs have evolved a new tetramerization interface and unique and highly conserved surface for interaction with repressors. Using site-directed mutagenesis, we validated those surfaces in vitro and in vivo and showed that TPL tetramerization and repressor binding are interdependent. Our results illustrate how evolution used a common set of protein domains to create a diversity of corepressors, achieving similar properties with different molecular solutions.


1993 ◽  
Vol 13 (4) ◽  
pp. 2091-2103 ◽  
Author(s):  
S Türkel ◽  
P J Farabaugh

Transcription of the Ty2-917 retrotransposon of Saccharomyces cerevisiae is modulated by a complex set of positive and negative elements, including a negative region located within the first open reading frame, TYA2. The negative region includes three downstream repression sites (DRSI, DRSII, and DRSIII). In addition, the negative region includes at least two downstream activation sites (DASs). This paper concerns the characterization of DASI. A 36-bp DASI oligonucleotide acts as an autonomous transcriptional activation site and includes two sequence elements which are both required for activation. We show that these sites bind in vitro the transcriptional activation protein GCN4 and that their activity in vivo responds to the level of GCN4 in the cell. We have termed the two sites GCN4 binding sites (GBS1 and GBS2). GBS1 is a high-affinity GCN4 binding site (dissociation constant, approximately 25 nM at 30 degrees C), binding GCN4 with about the affinity of a consensus UASGCN4, this though GBS1 includes two differences from the right half of the palindromic consensus site. GBS2 is more diverged from the consensus and binds GCN4 with about 20-fold-lower affinity. Nucleotides 13 to 36 of DASI overlap DRSII. Since DRSII is a transcriptional repression site, we tested whether DASI includes repression elements. We identify two sites flanking GBS2, both of which repress transcription activated by the consensus GCN4-specific upstream activation site (UASGCN4). One of these is repeated in the 12 bp immediately adjacent to DASI. Thus, in a 48-bp region of Ty2-917 are interspersed two positive and three negative transcriptional regulators. The net effect of the region must depend on the interaction of the proteins bound at these sites, which may include their competing for binding sites, and on the physiological control of the activity of these proteins.


2019 ◽  
Vol 133 (20) ◽  
pp. 2045-2059 ◽  
Author(s):  
Da Zhang ◽  
Xiuli Wang ◽  
Siyao Chen ◽  
Selena Chen ◽  
Wen Yu ◽  
...  

Abstract Background: Pulmonary artery endothelial cell (PAEC) inflammation is a critical event in the development of pulmonary arterial hypertension (PAH). However, the pathogenesis of PAEC inflammation remains unclear. Methods: Purified recombinant human inhibitor of κB kinase subunit β (IKKβ) protein, human PAECs and monocrotaline-induced pulmonary hypertensive rats were employed in the study. Site-directed mutagenesis, gene knockdown or overexpression were conducted to manipulate the expression or activity of a target protein. Results: We showed that hydrogen sulfide (H2S) inhibited IKKβ activation in the cell model of human PAEC inflammation induced by monocrotaline pyrrole-stimulation or knockdown of cystathionine γ-lyase (CSE), an H2S generating enzyme. Mechanistically, H2S was proved to inhibit IKKβ activity directly via sulfhydrating IKKβ at cysteinyl residue 179 (C179) in purified recombinant IKKβ protein in vitro, whereas thiol reductant dithiothreitol (DTT) reversed H2S-induced IKKβ inactivation. Furthermore, to demonstrate the significance of IKKβ sulfhydration by H2S in the development of PAEC inflammation, we mutated C179 to serine (C179S) in IKKβ. In purified IKKβ protein, C179S mutation of IKKβ abolished H2S-induced IKKβ sulfhydration and the subsequent IKKβ inactivation. In human PAECs, C179S mutation of IKKβ blocked H2S-inhibited IKKβ activation and PAEC inflammatory response. In pulmonary hypertensive rats, C179S mutation of IKKβ abolished the inhibitory effect of H2S on IKKβ activation and pulmonary vascular inflammation and remodeling. Conclusion: Collectively, our in vivo and in vitro findings demonstrated, for the first time, that endogenous H2S directly inactivated IKKβ via sulfhydrating IKKβ at Cys179 to inhibit nuclear factor-κB (NF-κB) pathway activation and thereby control PAEC inflammation in PAH.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


Sign in / Sign up

Export Citation Format

Share Document