scholarly journals A Role for Gcn5-Mediated Global Histone Acetylation in Transcriptional Regulation

2006 ◽  
Vol 26 (5) ◽  
pp. 1610-1616 ◽  
Author(s):  
Rachel Maria Imoberdorf ◽  
Irini Topalidou ◽  
Michel Strubin

ABSTRACT Transcriptional activators often require histone acetyltransferases (HATs) for full activity. The common explanation is that activators directly recruit HATs to gene promoters to locally hyperacetylate histones and thereby facilitate transcription complex formation. However, in addition to being targeted to specific loci, HATs such as Gcn5 also modify histones genome-wide. Here we provide evidence for a role of this global HAT activity in regulated transcription. We show that activation by direct recruitment of the transcriptional machinery neither recruits Gcn5 nor induces changes in histone acetylation yet can strongly depend on Gcn5 at promoters showing a high basal state of Gcn5-mediated histone acetylation. We also show that Gcn5 dependency varies among core promoters and is influenced by the strength of interaction used to recruit the machinery and by the affinity of the latter for the core promoter. These data support a role for global Gcn5 HAT activity in modulating transcription independently of its known coactivator function.

2021 ◽  
Author(s):  
René Dreos ◽  
Nati Malachi ◽  
Anna Sloutskin ◽  
Philipp Bucher ◽  
Tamar Juven-Gershon

AbstractMetazoan core promoters, which direct the initiation of transcription by RNA polymerase II (Pol II), may contain short sequence motifs termed core promoter elements/motifs (e.g. the TATA box, initiator (Inr) and downstream core promoter element (DPE)), which recruit Pol II via the general transcription machinery. The DPE was discovered and extensively characterized in Drosophila, where it is strictly dependent on both the presence of an Inr and the precise spacing from it. Since the Drosophila DPE is recognized by the human transcription machinery, it is most likely that some human promoters contain a downstream element that is similar, though not necessarily identical, to the Drosophila DPE. However, only a couple of human promoters were shown to contain a functional DPE, and attempts to computationally detect human DPE-containing promoters have mostly been unsuccessful. Using a newly-designed motif discovery strategy based on Expectation-Maximization probabilistic partitioning algorithms, we discovered preferred downstream positions (PDP) in human promoters that resemble the Drosophila DPE. Available chromatin accessibility footprints revealed that Drosophila and human Inr+DPE promoter classes are not only highly structured, but also similar to each other, particularly in the proximal downstream region. Clustering of the corresponding sequence motifs using a neighbor-joining algorithm strongly suggests that canonical Inr+DPE promoters could be common to metazoan species. Using reporter assays we demonstrate the contribution of the identified downstream positions to the function of multiple human promoters. Furthermore, we show that alteration of the spacing between the Inr and PDP by two nucleotides results in reduced promoter activity, suggesting a strict spacing dependency of the newly discovered human PDP on the Inr. Taken together, our strategy identified novel functional downstream positions within human core promoters, supporting the existence of DPE-like motifs in human promoters.Author summaryTranscription of genes by the RNA polymerase II enzyme initiates at a genomic region termed the core promoter. The core promoter is a regulatory region that may contain diverse short DNA sequence motifs/elements that confer specific properties to it. Interestingly, core promoter motifs can be located both upstream and downstream of the transcription start site. Variable compositions of core promoter elements have been identified. The initiator (Inr) motif and the downstream core promoter element (DPE) is a combination of elements that has been identified and extensively characterized in fruit flies. Although a few Inr+DPE - containing human promoters have been identified, the presence of transcriptionally important downstream core promoter positions within human promoters has been a matter of controversy in the literature. Here, using a newly-designed motif discovery strategy, we discovered preferred downstream positions in human promoters that resemble fruit fly DPE. Clustering of the corresponding sequence motifs in eight additional species indicated that such promoters could be common to multicellular non-plant organisms. Importantly, functional characterization of the newly discovered preferred downstream positions supports the existence of Inr+DPE-containing promoters in human genes.


2022 ◽  
Vol 12 ◽  
Author(s):  
Inge Holm ◽  
Luisa Nardini ◽  
Adrien Pain ◽  
Emmanuel Bischoff ◽  
Cameron E. Anderson ◽  
...  

Almost all regulation of gene expression in eukaryotic genomes is mediated by the action of distant non-coding transcriptional enhancers upon proximal gene promoters. Enhancer locations cannot be accurately predicted bioinformatically because of the absence of a defined sequence code, and thus functional assays are required for their direct detection. Here we used a massively parallel reporter assay, Self-Transcribing Active Regulatory Region sequencing (STARR-seq), to generate the first comprehensive genome-wide map of enhancers in Anopheles coluzzii, a major African malaria vector in the Gambiae species complex. The screen was carried out by transfecting reporter libraries created from the genomic DNA of 60 wild A. coluzzii from Burkina Faso into A. coluzzii 4a3A cells, in order to functionally query enhancer activity of the natural population within the homologous cellular context. We report a catalog of 3,288 active genomic enhancers that were significant across three biological replicates, 74% of them located in intergenic and intronic regions. The STARR-seq enhancer screen is chromatin-free and thus detects inherent activity of a comprehensive catalog of enhancers that may be restricted in vivo to specific cell types or developmental stages. Testing of a validation panel of enhancer candidates using manual luciferase assays confirmed enhancer function in 26 of 28 (93%) of the candidates over a wide dynamic range of activity from two to at least 16-fold activity above baseline. The enhancers occupy only 0.7% of the genome, and display distinct composition features. The enhancer compartment is significantly enriched for 15 transcription factor binding site signatures, and displays divergence for specific dinucleotide repeats, as compared to matched non-enhancer genomic controls. The genome-wide catalog of A. coluzzii enhancers is publicly available in a simple searchable graphic format. This enhancer catalogue will be valuable in linking genetic and phenotypic variation, in identifying regulatory elements that could be employed in vector manipulation, and in better targeting of chromosome editing to minimize extraneous regulation influences on the introduced sequences.Importance: Understanding the role of the non-coding regulatory genome in complex disease phenotypes is essential, but even in well-characterized model organisms, identification of regulatory regions within the vast non-coding genome remains a challenge. We used a large-scale assay to generate a genome wide map of transcriptional enhancers. Such a catalogue for the important malaria vector, Anopheles coluzzii, will be an important research tool as the role of non-coding regulatory variation in differential susceptibility to malaria infection is explored and as a public resource for research on this important insect vector of disease.


2019 ◽  
Author(s):  
Wei Fang ◽  
Yi Wen ◽  
Xiangyun Wei

AbstractTissue-specific or cell type-specific transcription of protein-coding genes is controlled by both trans-regulatory elements (TREs) and cis-regulatory elements (CREs). However, it is challenging to identify TREs and CREs, which are unknown for most genes. Here, we describe a protocol for identifying two types of transcription-activating CREs—core promoters and enhancers—of zebrafish photoreceptor type-specific genes. This protocol is composed of three phases: bioinformatic prediction, experimental validation, and characterization of the CREs. To better illustrate the principles and logic of this protocol, we exemplify it with the discovery of the core promoter and enhancer of the mpp5b apical polarity gene (also known as ponli), whose red, green, and blue (RGB) cone-specific transcription requires its enhancer, a member of the rainbow enhancer family. While exemplified with an RGB cone-specific gene, this protocol is general and can be used to identify the core promoters and enhancers of other protein-coding genes.


2017 ◽  
Author(s):  
Sarah Rennie ◽  
Maria Dalby ◽  
Marta Lloret-Llinares ◽  
Stylianos Bakoulis ◽  
Christian Dalager Vaagensø ◽  
...  

ABSTRACTMammalian gene promoters and enhancers share many properties. They are composed of a unified promoter architecture of divergent transcripton initiation and gene promoters may exhibit enhancer function. However, it is currently unclear how expression strength of a regulatory element relates to its enhancer strength and if the unifying architecture is conserved across Metazoa. Here we investigate the transcription initiation landscape and its associated RNA decay in D. melanogaster. Surprisingly, we find that the majority of active gene-distal enhancers and a considerable fraction of gene promoters are divergently transcribed. We observe quantitative relationships between enhancer potential, expression level and core promoter strength, providing an explanation for indirectly related histone modifications that are reflecting expression levels. Lowly abundant unstable RNAs initiated from weak core promoters are key characteristics of gene-distal developmental enhancers, while the housekeeping enhancer strengths of gene promoters reflect their expression strengths. The different layers of regulation mediated by gene-distal enhancers and gene promoters are also reflected in chromatin interaction data. Our results suggest a unified promoter architecture of many D. melanogaster regulatory elements, that is universal across Metazoa, whose regulatory functions seem to be related to their core promoter elements.


2014 ◽  
Vol 207 (1) ◽  
pp. 91-105 ◽  
Author(s):  
Chikara Tanaka ◽  
Li-Jing Tan ◽  
Keisuke Mochida ◽  
Hiromi Kirisako ◽  
Michiko Koizumi ◽  
...  

In selective autophagy, degradation targets are specifically recognized, sequestered by the autophagosome, and transported into the lysosome or vacuole. Previous studies delineated the molecular basis by which the autophagy machinery recognizes those targets, but the regulation of this process is still poorly understood. In this paper, we find that the highly conserved multifunctional kinase Hrr25 regulates two distinct selective autophagy–related pathways in Saccharomyces cerevisiae. Hrr25 is responsible for the phosphorylation of two receptor proteins: Atg19, which recognizes the assembly of vacuolar enzymes in the cytoplasm-to-vacuole targeting pathway, and Atg36, which recognizes superfluous peroxisomes in pexophagy. Hrr25-mediated phosphorylation enhances the interactions of these receptors with the common adaptor Atg11, which recruits the core autophagy-related proteins that mediate the formation of the autophagosomal membrane. Thus, this study introduces regulation of selective autophagy as a new role of Hrr25 and, together with other recent studies, reveals that different selective autophagy–related pathways are regulated by a uniform mechanism: phosphoregulation of the receptor–adaptor interaction.


2006 ◽  
Vol 26 (7) ◽  
pp. 2791-2802 ◽  
Author(s):  
Melissa Durant ◽  
B. Franklin Pugh

ABSTRACT Histone acetylation regulates gene expression, yet the functional contributions of the numerous histone acetyltransferases (HATs) to gene expression and their relationships with each other remain largely unexplored. The central role of the putative HAT-containing TAF1 subunit of TFIID in gene expression raises the fundamental question as to what extent, if any, TAF1 contributes to acetylation in vivo and to what extent it is redundant with other HATs. Our findings herein do not support the basic tenet that TAF1 is a major HAT in Saccharomyces cerevisiae, nor do we find that TAF1 is functionally redundant with other HATs, including Gcn5, Elp3, Hat1, Hpa2, Sas3, and Esa1, which is in contrast to previous conclusions regarding Gcn5. Our findings do reveal that of these HATs, only Gcn5 and Esa1 contribute substantially to gene expression genome wide. Interestingly, histone acetylation at promoter regions throughout the genome does not require TAF1 or RNA polymerase II, indicating that most acetylation is likely to precede transcription and not depend upon it. TAF1 function has been linked to Bdf1, which binds TFIID and acetylated histone H4 tails, but no linkage between TAF1 and the H4 HAT Esa1 has been established. Here, we present evidence for such a linkage through Bdf1.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 310-310
Author(s):  
Zhenhua Yang ◽  
Kushani Shah ◽  
Jonathan Augustin ◽  
Jing Hu ◽  
Hao Jiang

Abstract Epigenetic modulators have emerged as promising targets for treating cancers, especially blood cancers. As the major histone H3K4 methylation enzymes in mammals, the SET1/MLL complexes represent potential drug targets in epigenetic therapeutics due to (i) the intimate connection of H3K4 methylation with gene expression, and (ii) their extensive association with multiple cancers including blood cancers. However, the functional role for the SET1/MLL complexes in tumorigenesis remains largely unclear. The SET1/MLL complexes comprise one of six different catalytic subunits and several shared core subunits including DPY30. We have previously shown that DPY30 directly facilitates genome-wide H3K4 methylation, and plays a crucial role in fundamental cellular processes including proliferation and differentiation, especially in the hematopoietic system. Our new analyses have shown that the core, but not the catalytic, subunits of SET1/MLL complexes is significantly up-regulated in primary human Burkitt's lymphomas bearing MYC-Ig translocations compared to other B lymphomas, and Myc binds to genes encoding the core but not the catalytic subunits. These results indicate that the core subunits are directly regulated by MYC, and prompted us to study their functional role in MYC-driven tumorigenesis. Using a Dpy30 conditional knockout mouse model that we recently established, we have shown a critical role of Dpy30 in the fate determination of hematopoietic stem and progenitor cells. Due to the severe pancytopenia of the knockout mice, we tested if genetically reducing Dpy30 dose may affect Myc-driven tumorigenesis in the Eμ-myc mouse. We found that Eμ-myc; Dpy30+/- mice survived significantly longer than their Eμ-myc littermates (see figure), with the median survival extended from 121 to 180 days, and with significantly alleviated spleen enlargement. Importantly, Dpy30+/- mice (no Eμ-myc) appear completely healthy with normal blood profiles. These results demonstrate that reducing Dpy30 level confers a significant resistance to Myc-driven lymphomagenesis without affecting normal physiology. We then found that, in the presence of Eμ -Myc, Dpy30 heterozygosity significantly increased apoptosis of splenic B cells, and reduced expression of some key anti-apoptotic genes. We further showed that Dpy30 directly bound to and controlled the H3K4 methylation at the regulated anti-apoptosis genes in splenic B cells. These results suggest that Myc overexpression increases the dependence of key apoptosis-regulatory genes on Dpy30, and thus sensitizes tumor cells to Dpy30 inhibition, exhibiting "epigenetic vulnerability". To further study DPY30's role in MYC-dependent tumorigenesis at the molecular level, we have shown that DPY30 depletion in a MYC-dependent B lymphoma cell line markedly reduced (i) the lymphoma cell growth, (ii) expression of MYC targets, and most interestingly, (iii) binding of MYC to many of its genomic targets, as revealed by our ChIP-seq results. These results suggest that, in addition to promoting the expression of MYC gene itself that we previously found, DPY30 also reguates MYC's activity through promoting the genomic binding of MYC protein for target transcription. Taken together, our studies have established an important role of Dpy30 in the Myc-driven lymphomagenesis, partially through its regulation of the target binding activity of Myc. Further studies of the genome-wide impact of Dpy30 inhibition on the chromatin configuration and expression of key tumoregenic genes are undergoing and will be discussed. These studies will help us understand how Dpy30-mediated chromatin modification coordinates with key oncogenes in promoting hematological malignancies, and thus may represent a potential epigenetic target in treatment of certain blood cancers. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


2006 ◽  
Vol 26 (9) ◽  
pp. 3339-3352 ◽  
Author(s):  
Abhijit Shukla ◽  
Nadia Stanojevic ◽  
Zhen Duan ◽  
Payel Sen ◽  
Sukesh R. Bhaumik

ABSTRACT Despite recent advances in characterizing the regulation of histone H3 lysine 4 (H3-K4) methylation at the GAL1 gene by the H2B-K123-specific deubiquitinase activity of Saccharomyces cerevisiae SAGA (Spt-Ada-Gcn5-acetyltransferase)-associated Ubp8p, our knowledge on the general role of Ubp8p at the SAGA-dependent genes is lacking. For this study, using a formaldehyde-based in vivo cross-linking and chromatin immunoprecipitation (ChIP) assay, we have analyzed the role of Ubp8p in the regulation of H3-K4 methylation at three other SAGA-dependent yeast genes, namely, PHO84, ADH1, and CUP1. Like that at GAL1, H3-K4 methylation is increased at the PHO84 core promoter in the UBP8 deletion mutant. We also show that H3-K4 methylation remains invariant at the PHO84 open reading frame in the Δubp8 mutant, demonstrating a highly localized role of Upb8p in regulation of H3-K4 methylation at the promoter in vivo. However, unlike that at PHO84, H3-K4 methylation at the two other SAGA-dependent genes is not controlled by Ubp8p. Interestingly, Ubp8p and H3-K4 methylation are dispensable for preinitiation complex assembly at the core promoters of these genes. Our ChIP assay further demonstrates that the association of Ubp8p with SAGA is mediated by Sgf11p, consistent with recent biochemical data. Collectively, the data show that Ubp8p differentially controls H3-K4 methylation at the SAGA-dependent promoters, revealing a complex regulatory network of histone methylation in vivo.


2009 ◽  
Vol 8 (8) ◽  
pp. 1174-1183 ◽  
Author(s):  
Adnane Sellam ◽  
Faïza Tebbji ◽  
André Nantel

ABSTRACT The Ndt80p transcription factor modulates azole tolerance in Candida albicans by controlling the expression of the gene for the drug efflux pump Cdr1p. To date, the contribution of this transcriptional modulator to drug tolerance is not yet well understood. Here, we investigate the role of Ndt80p in mediating fluconazole tolerance by determining its genome-wide occupancy using chromatin immunoprecipitation coupled to high-density tiling arrays. Ndt80p was found to bind a large number of gene promoters with diverse biological functions. Gene ontology analysis of these Ndt80p targets revealed a significant enrichment in gene products related to the cell wall, carbohydrate metabolism, stress responses, hyphal development, multidrug transport, and the cell cycle. Ndt80p was found on the promoters of ergosterol biosynthesis genes, including on the azole target Erg11p. Additionally, expression profiling was used to identify fluconazole-responsive genes that require Ndt80p for their proper expression. We found that Ndt80p is crucial for the expression of numerous fluconazole-responsive genes, especially genes involved in ergosterol metabolism. Therefore, by combining genome-wide location and transcriptional profiling, we have characterized the Ndt80p fluconazole-dependent regulon and demonstrated the key role of this global transcriptional regulator in modulating sterol metabolism and drug resistance in C. albicans.


2016 ◽  
Author(s):  
Ananda Kishore Mukherjee ◽  
Shalu Sharma ◽  
Parashar Dhapola ◽  
Dhurjhoti Saha ◽  
Tabish Hussain ◽  
...  

AbstractTRF2 is a telomere repeat binding factor crucial for telomere maintenance and genome stability. An emerging non-conventional role of TRF2 is as a transcriptional regulator through extra-telomeric bindings. Herein we report that increase in telomere length leads to sequestration of TRF2 at the telomeres leading to reduced extra-telomeric TRF2 occupancy genome wide. Decrease in TRF2 occupancy was found on multiple gene promoters in cells with elongated telomeres, including the cell cycle regulator kinase-p21. We found that TRF2 is a transcriptional repressor of p21, and, interestingly, TRF2-mediated regulatory control of p21 is telomere length dependent.


Sign in / Sign up

Export Citation Format

Share Document