scholarly journals Cooperative Regulation of Extracellular Signal-Regulated Kinase Activation and Cell Shape Change by Filamin A and β-Arrestins

2006 ◽  
Vol 26 (9) ◽  
pp. 3432-3445 ◽  
Author(s):  
Mark G. H. Scott ◽  
Vincenzo Pierotti ◽  
Hélène Storez ◽  
Erika Lindberg ◽  
Alain Thuret ◽  
...  

ABSTRACT β-Arrestins (βarr) are multifunctional adaptor proteins that can act as scaffolds for G protein-coupled receptor activation of mitogen-activated protein kinases (MAPK). Here, we identify the actin-binding and scaffolding protein filamin A (FLNA) as a βarr-binding partner using Son of sevenless recruitment system screening, a classical yeast two-hybrid system, coimmunoprecipitation analyses, and direct binding in vitro. In FLNA, the βarr-binding site involves tandem repeat 22 in the carboxyl terminus. βarr binds FLNA through both its N- and C-terminal domains, indicating the presence of multiple binding sites. We demonstrate that βarr and FLNA act cooperatively to activate the MAPK extracellular signal-regulated kinase (ERK) downstream of activated muscarinic M1 (M1MR) and angiotensin II type 1a (AT1AR) receptors and provide experimental evidence indicating that this phenomenon is due to the facilitation of βarr-ERK2 complex formation by FLNA. In Hep2 cells, stimulation of M1MR or AT1AR results in the colocalization of receptor, βarr, FLNA, and active ERK in membrane ruffles. Reduction of endogenous levels of βarr or FLNA and a catalytically inactive dominant negative MEK1, which prevents ERK activation, inhibit membrane ruffle formation, indicating the functional requirement for βarr, FLNA, and active ERK in this process. Our results indicate that βarr and FLNA cooperate to regulate ERK activation and actin cytoskeleton reorganization.

2007 ◽  
Vol 176 (5) ◽  
pp. 709-718 ◽  
Author(s):  
Chunxi Ge ◽  
Guozhi Xiao ◽  
Di Jiang ◽  
Renny T. Franceschi

The extracellular signal–regulated kinase (ERK)–mitogen-activated protein kinase (MAPK) pathway provides a major link between the cell surface and nucleus to control proliferation and differentiation. However, its in vivo role in skeletal development is unknown. A transgenic approach was used to establish a role for this pathway in bone. MAPK stimulation achieved by selective expression of constitutively active MAPK/ERK1 (MEK-SP) in osteoblasts accelerated in vitro differentiation of calvarial cells, as well as in vivo bone development, whereas dominant-negative MEK1 was inhibitory. The involvement of the RUNX2 transcription factor in this response was established in two ways: (a) RUNX2 phosphorylation and transcriptional activity were elevated in calvarial osteoblasts from TgMek-sp mice and reduced in cells from TgMek-dn mice, and (b) crossing TgMek-sp mice with Runx2+/− animals partially rescued the hypomorphic clavicles and undemineralized calvaria associated with Runx2 haploinsufficiency, whereas TgMek-dn; Runx2+/− mice had a more severe skeletal phenotype. This work establishes an important in vivo function for the ERK–MAPK pathway in bone that involves stimulation of RUNX2 phosphorylation and transcriptional activity.


2010 ◽  
Vol 21 (8) ◽  
pp. 1409-1422 ◽  
Author(s):  
Sarah Appel ◽  
Philip G. Allen ◽  
Susanne Vetterkind ◽  
Jian-Ping Jin ◽  
Kathleen G. Morgan

Migration of fibroblasts is important in wound healing. Here, we demonstrate a role and a mechanism for h3/acidic calponin (aCaP, CNN3) in REF52.2 cell motility, a fibroblast line rich in actin filaments. We show that the actin-binding protein h3/acidic calponin associates with stress fibers in the absence of stimulation but is targeted to the cell cortex and podosome-like structures after stimulation with a phorbol ester, phorbol-12,13-dibutyrate (PDBu). By coimmunoprecipitation and colocalization, we show that extracellular signal-regulated kinase (ERK)1/2 and protein kinase C (PKC)α constitutively associate with h3/acidic calponin and are cotargeted with h3/acidic calponin in the presence of PDBu. This targeting can be blocked by a PKC inhibitor but does not require phosphorylation of h3/acidic calponin at the PKC sites S175 or T184. Knockdown of h3/acidic calponin results in a loss of PDBu-mediated ERK1/2 targeting, whereas PKCα targeting is unaffected. Caldesmon is an actin-binding protein that regulates actomyosin interactions and is a known substrate of ERK1/2. Both ERK1/2 activity and nonmuscle l-caldesmon phosphorylation are blocked by h3/acidic calponin knockdown. Furthermore, h3/acidic calponin knockdown inhibits REF52.2 migration in an in vitro wound healing assay. Our findings are consistent with a model whereby h3/acidic calponin controls fibroblast migration by regulation of ERK1/2-mediated l-caldesmon phosphorylation.


1998 ◽  
Vol 187 (2) ◽  
pp. 237-244 ◽  
Author(s):  
Masaki Kashiwada ◽  
Yumiko Shirakata ◽  
Jun-Ichiro Inoue ◽  
Hiroyasu Nakano ◽  
Kenji Okazaki ◽  
...  

CD40 activates nuclear factor kappa B (NFκB) and the mitogen-activated protein kinase (MAPK) subfamily, including extracellular signal–regulated kinase (ERK). The CD40 cytoplasmic tail interacts with tumor necrosis factor receptor–associated factor (TRAF)2, TRAF3, TRAF5, and TRAF6. These TRAF proteins, with the exception of TRAF3, are required for NFκB activation. Here we report that transient expression of TRAF6 stimulated both ERK and NFκB activity in the 293 cell line. Coexpression of the dominant-negative H-Ras did not affect TRAF6-mediated ERK activity, suggesting that TRAF6 may activate ERK along a Ras-independent pathway. The deletion mutant of TRAF6 lacking the NH2-terminal domain acted as a dominant-negative mutant to suppress ERK activation by full-length CD40 and suppress prominently ERK activation by a deletion mutant of CD40 only containing the binding site for TRAF6 in the cytoplasmic tail (CD40Δ246). Transient expression of the dominant-negative H-Ras significantly suppressed ERK activation by full-length CD40, but marginally suppressed ERK activation by CD40Δ246, compatible with the possibility that TRAF6 is a major transducer of ERK activation by CD40Δ246, whose activity is mediated by a Ras-independent pathway. These results suggest that CD40 activates ERK by both a Ras-dependent pathway and a Ras-independent pathway in which TRAF6 could be involved.


2002 ◽  
Vol 22 (17) ◽  
pp. 6023-6033 ◽  
Author(s):  
Scott T. Eblen ◽  
Jill K. Slack ◽  
Michael J. Weber ◽  
Andrew D. Catling

ABSTRACT Utilizing mutants of extracellular signal-regulated kinase 2 (ERK2) that are defective for intrinsic mitogen-activated protein kinase or ERK kinase (MEK) binding, we have identified a convergent signaling pathway that facilitates regulated MEK-ERK association and ERK activation. ERK2-Δ19-25 mutants defective in MEK binding could be phosphorylated in response to mitogens; however, signaling from the Raf-MEK pathway alone was insufficient to stimulate their phosphorylation in COS-1 cells. Phosphorylation of ERK2-Δ19-25 but not of wild-type ERK2 in response to Ras V12 was greatly inhibited by dominant-negative Rac. Activated forms of Rac and Cdc42 could enhance the association of wild-type ERK2 with MEK1 but not with MEK2 in serum-starved adherent cells. This effect was p21-activated kinase (PAK) dependent and required the putative PAK phosphorylation sites T292 and S298 of MEK1. In detached cells placed in suspension, ERK2 was complexed with MEK2 but not with MEK1. However, upon replating of cells onto a fibronectin matrix, there was a substantial induction of MEK1-ERK2 association and ERK activation, both of which could be inhibited by dominant-negative PAK1. These data show that Rac facilitates the assembly of a mitogen-activated protein kinase signaling complex required for ERK activation and that this facilitative signaling pathway is active during adhesion to the extracellular matrix. These findings reveal a novel mechanism by which adhesion and growth factor signals are integrated during ERK activation.


1997 ◽  
Vol 272 (3) ◽  
pp. L558-L565 ◽  
Author(s):  
A. Y. Karpova ◽  
M. K. Abe ◽  
J. Li ◽  
P. T. Liu ◽  
J. M. Rhee ◽  
...  

We tested whether activation of mitogen-activated protein kinase/ extracellular signal-regulated kinase kinase-1 (MEK1) is required and sufficient for extracellular signal-regulated kinase (ERK) activation in airway smooth muscle cells. First, we transiently cotransfected bovine tracheal myocytes with an epitope-tagged ERK2 and a dominant-negative or a constitutively active form of the gene encoding MEK1 and assessed ERK2 activation by in vitro phosphorylation assay. Expression of the dominant-negative MEK1 inhibited platelet-derived growth factor (PDGF)-induced ERK2 activation, whereas expression of the constitutively active MEK1 induced ERK2 activation, suggesting that MEK1 is required and sufficient for ERK activation in these cells. Next, we assessed the effect of PD-98059, a synthetic MEK inhibitor, on PDGF-induced MEK1 and ERK activation. PD-98059 (10 microM) inhibited MEK1 and ERK activation, confirming that MEK1 is required for ERK activation in bovine tracheal myocytes. PD-98059 had no effect on Src or Raf-1 activity, evidence that PD-98059 is a specific inhibitor of MEK in this system. Finally, PD-98059 reduced PDGF-induced [(3)H]thymidine incorporation in a concentration-dependent manner, suggesting that catalytic activation of MEK1 and ERKs is required for DNA synthesis. We conclude that MEK1 is required for PDGF-induced ERK activation in bovine tracheal myocytes and that MEK1 and ERKs are required for PDGF-induced DNA synthesis in these cells.


2001 ◽  
Vol 21 (17) ◽  
pp. 5958-5969 ◽  
Author(s):  
Yvona Ward ◽  
Warner Wang ◽  
Elisa Woodhouse ◽  
Ilona Linnoila ◽  
Lance Liotta ◽  
...  

ABSTRACT Approximately 50% of metastatic tumors contain Ras mutations. Ras proteins can activate at least three downstream signaling cascades mediated by the Raf–MEK–extracellular signal-regulated kinase family, phosphatidylinositol-3 (PI3) kinase, and Ral-specific guanine nucleotide exchange factors (RalGEFs). Here we investigated the contribution of RalGEF and ERK activation to the development of experimental metastasis in vivo and associated invasive properties in vitro. Each pathway contributes distinct properties to the metastatic phenotype. Following lateral tail vein injection, 3T3 cells transformed by constitutively active Raf or MEK produced lung metastasis that displayed circumscribed, noninfiltrating borders. In contrast, 3T3 cells transformed by Ras(12V,37G), a Ras effector mutant that activates RalGEF but not Raf or P13 kinase, formed aggressive, infiltrative metastasis. Dominant negative RalB inhibited Ras(12V,37G)-activated invasion and metastasis, demonstrating the necessity of the RalGEF pathway for a fully transformed phenotype. Moreover, 3T3 cells constitutively expressing a membrane-associated form of RalGEF (RalGDS-CAAX) formed invasive tumors as well, demonstrating that activation of a RalGEF pathway is sufficient to initiate the invasive phenotype. Despite the fact that Ras(12V,37G) expression does not elevate ERK activity, inhibition of this kinase by a conditionally expressed ERK phosphatase demonstrated that ERK activity was necessary for Ras(12V,37G)-transformed cells to express matrix-degrading activity in vitro and tissue invasiveness in vivo. Therefore, these experiments have revealed a hitherto-unknown but essential interaction of the RalGEF and ERK pathways to produce a malignant phenotype. The generality of the role of the RalGEF pathway in metastasis is supported by the finding that Ras(12V,37G) increased the invasiveness of epithelial cells as well as fibroblasts.


2007 ◽  
Vol 18 (6) ◽  
pp. 1979-1991 ◽  
Author(s):  
Gaël Barthet ◽  
Bérénice Framery ◽  
Florence Gaven ◽  
Lucie Pellissier ◽  
Eric Reiter ◽  
...  

The 5-hydroxytryptamine4 (5-HT4) receptors have recently emerged as key modulators of learning, memory, and cognitive processes. In neurons, 5-hydroxytryptamine4 receptors (5-HT4Rs) activate cAMP production and protein kinase A (PKA); however, nothing is known about their ability to activate another key signaling pathway involved in learning and memory: the extracellular signal-regulated kinase (ERK) pathway. Here, we show that 5-HT4R stimulation, in primary neurons, produced a potent but transient activation of the ERK pathway. Surprisingly, this activation was mostly PKA independent. Similarly, using pharmacological, genetic, and molecular tools, we observed that 5-HT4Rs in human embryonic kidney 293 cells, activated the ERK pathway in a Gs/cAMP/PKA-independent manner. We also demonstrated that other classical G proteins (Gq/Gi/Go) and associated downstream messengers were not implicated in the 5-HT4R–activated ERK pathway. The 5-HT4R–mediated ERK activation seemed to be dependent on Src tyrosine kinase and yet totally independent of β-arrestin. Immunocytofluorescence revealed that ERK activation by 5-HT4R was restrained to the plasma membrane, whereas p-Src colocalized with the receptor and carried on even after endocytosis. This phenomenon may result from a tight interaction between 5-HT4R and p-Src detected by coimmunoprecipitation. Finally, we confirmed that the main route by which 5-HT4Rs activate ERKs in neurons was Src dependent. Thus, in addition to classical cAMP/PKA signaling pathways, 5-HT4Rs may use ERK pathways to control memory process.


2004 ◽  
Vol 165 (3) ◽  
pp. 371-381 ◽  
Author(s):  
M. Cecilia Subauste ◽  
Olivier Pertz ◽  
Eileen D. Adamson ◽  
Christopher E. Turner ◽  
Sachiko Junger ◽  
...  

Cells lacking vinculin are highly metastatic and motile. The reasons for this finding have remained unclear. Both enhanced survival and motility are critical to metastasis. Here, we show that vinculin null (vin−/−) cells and cells expressing a vinculin Y822F mutant have increased survival due to up-regulated activity of extracellular signal–regulated kinase (ERK). This increase is shown to result from vinculin's modulation of paxillin–FAK interactions. A vinculin fragment (amino acids 811–1066) containing the paxillin binding site restored apoptosis and suppressed ERK activity in vin−/− cells. Both vinY822F and vin−/− cells exhibit increased interaction between paxillin and focal adhesion kinase (FAK) and increased paxillin and FAK phosphorylation. Transfection with paxillin Y31FY118F dominant-negative mutant in these cells inhibits ERK activation and restores apoptosis. The enhanced motility of vin−/− and vinY822F cells is also shown to be due to a similar mechanism. Thus, vinculin regulates survival and motility via ERK by controlling the accessibility of paxillin for FAK interaction.


2020 ◽  
Vol 20 (8) ◽  
pp. 624-637 ◽  
Author(s):  
Qiong Wu ◽  
Manlin Xiang ◽  
Kun Wang ◽  
Zhen Chen ◽  
Lu Long ◽  
...  

Background: Increasing evidence has shown that p62 plays an important role in tumorigenesis. However, relatively little is known about the association between p62 and tumor invasion and metastasis; in addition, its role in NPC (nasopharyngeal carcinoma, NPC) has been rarely investigated. Objective: To investigate the effect of p62 on tumorigenesis and metastasis in nasopharyngeal carcinoma. Methods: Western blotting, immunofluorescent staining and immunohistochemistry were used to evaluate p62 protein expression. Subsequently, cell viability, colony formation, migration, invasion and autophagy assays were performed. anti-p62 autoantibodies in sera were detected by ELISA. These data were correlated with clinicopathological parameters. Results: We confirmed that p62 was significantly up-regulated in NPC tissues. Furthermore, high expression of p62 was observed in NPC cell lines, and especially in the highly metastatic 5-8F cells. In vitro, down-regulation of p62 inhibited proliferation, clone forming ability, autophagy, migration, and invasion in 5-8F cells, whereas p62 overexpression resulted in the opposite effects in 6-10B cells. Moreover, we confirmed that p62 promotes NPC cell proliferation, migration, and invasion by activating ERK (extracellular signal-regulated kinase, ERK). Clinical analysis indicated that high p62 expression correlates with lymph node and distant metastasis (P<0.05). Serum anti-p62 autoantibodies were increased in NPC patients and levels were associated with metastasis. Conclusion : Our data establish p62 targeting ERK as potential determinant in the NPC, which supplies a new pathway to treat NPC. Furthermore, p62 is a potential biomarker which might be closely related to the tumorigenesis and metastasis in NPC.


Sign in / Sign up

Export Citation Format

Share Document