scholarly journals Berberine Improves Benign Prostatic Hyperplasia via Suppression of 5 Alpha Reductase and Extracellular Signal-Regulated Kinase in Vivo and in Vitro

2018 ◽  
Vol 9 ◽  
Author(s):  
Dong-Hyun Youn ◽  
Jinbong Park ◽  
Hye-Lin Kim ◽  
Yunu Jung ◽  
JongWook Kang ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 450
Author(s):  
Kensuke Mitsunari ◽  
Yasuyoshi Miyata ◽  
Tomohiro Matsuo ◽  
Yuta Mukae ◽  
Asato Otsubo ◽  
...  

Benign prostatic hyperplasia (BPH) is arguably the most common benign disease among men. This disease is often associated with lower urinary tract symptoms (LUTS) in men and significantly decreases the quality of life. Polyphenol consumption reportedly plays an important role in the prevention of many diseases, including BPH. In recent years, in addition to disease prevention, many studies have reported the efficacy and safety of polyphenol treatment against various pathological conditions in vivo and in vitro. Furthermore, numerous studies have also revealed the molecular mechanisms of the antioxidant and anti-inflammatory effects of polyphenols. We believe that an improved understanding of the detailed pharmacological roles of polyphenol-induced activities at a molecular level is important for the prevention and treatment of BPH. Polyphenols are composed of many members, and their biological roles differ. In this review, we first provide information regarding the pathological roles of oxidative stress and inflammation in BPH. Next, the antioxidant and anti-inflammatory effects of polyphenols, including those of flavonoids and non-flavonoids, are discussed. Finally, we talk about the results and limitations of previous clinical trials that have used polyphenols in BPH, with particular focus on their molecular mechanisms of action.


2016 ◽  
Vol 41 (12) ◽  
pp. 1303-1310 ◽  
Author(s):  
Guan-Yu Ren ◽  
Chun-Yang Chen ◽  
Wei-Guo Chen ◽  
Ya Huang ◽  
Li-Qiang Qin ◽  
...  

Secoisolariciresinol diglucoside (SDG), a lignan extracted from flaxseed, has been shown to suppress benign prostatic hyperplasia (BPH). However, little is known about the mechanistic basis for its anti-BPH activity. The present study showed that enterolactone (ENL), the mammalian metabolite of SDG, shared the similar binding site of G1 on a new type of membranous estrogen receptor, G-protein-coupled estrogen eceptor 1 (GPER), by docking simulations method. ENL and G1 (the specific agonist of GPER) inhibited the proliferation of human prostate stromal cell line WPMY-1 as shown by MTT assay and arrested cell cycle at the G0/G1 phase, which was displayed by propidium iodide staining following flow cytometer examination. Silencing GPER by short interfering RNA attenuated the inhibitory effect of ENL on WPMY-1 cells. The therapeutic potential of SDG in the treatment of BPH was confirmed in a testosterone propionate-induced BPH rat model. SDG significantly reduced the enlargement of the rat prostate and the number of papillary projections of prostatic alveolus and thickness of the pseudostratified epithelial and stromal cells when comparing with the model group. Mechanistic studies showed that SDG and ENL increased the expression of GPER both in vitro and in vivo. Furthermore, ENL-induced cell cycle arrest may be mediated by the activation of GPER/ERK pathway and subsequent upregulation of p53 and p21 and downregulation of cyclin D1. This work, in tandem with previous studies, will enhance our knowledge regarding the mechanism(s) of dietary phytochemicals on BPH prevention and ultimately expand the scope of adopting alternative approaches in BPH treatment.


2007 ◽  
Vol 176 (5) ◽  
pp. 709-718 ◽  
Author(s):  
Chunxi Ge ◽  
Guozhi Xiao ◽  
Di Jiang ◽  
Renny T. Franceschi

The extracellular signal–regulated kinase (ERK)–mitogen-activated protein kinase (MAPK) pathway provides a major link between the cell surface and nucleus to control proliferation and differentiation. However, its in vivo role in skeletal development is unknown. A transgenic approach was used to establish a role for this pathway in bone. MAPK stimulation achieved by selective expression of constitutively active MAPK/ERK1 (MEK-SP) in osteoblasts accelerated in vitro differentiation of calvarial cells, as well as in vivo bone development, whereas dominant-negative MEK1 was inhibitory. The involvement of the RUNX2 transcription factor in this response was established in two ways: (a) RUNX2 phosphorylation and transcriptional activity were elevated in calvarial osteoblasts from TgMek-sp mice and reduced in cells from TgMek-dn mice, and (b) crossing TgMek-sp mice with Runx2+/− animals partially rescued the hypomorphic clavicles and undemineralized calvaria associated with Runx2 haploinsufficiency, whereas TgMek-dn; Runx2+/− mice had a more severe skeletal phenotype. This work establishes an important in vivo function for the ERK–MAPK pathway in bone that involves stimulation of RUNX2 phosphorylation and transcriptional activity.


Author(s):  
Meng Gu ◽  
Chong Liu ◽  
TianYe Yang ◽  
Ming Zhan ◽  
Zhikang Cai ◽  
...  

The role of high-fat diet (HFD) induced gut microbiota alteration and Ghrelin as well as their correlation in benign prostatic hyperplasia (BPH) were explored in our study. The gut microbiota was analyzed by 16s rRNA sequencing. Ghrelin levels in serum, along with Ghrelin and Ghrelin receptor in prostate tissue of mice and patients with BPH were measured. The effect of Ghrelin on cell proliferation, apoptosis, and induction of BPH in mice was explored. Our results indicated that BPH mice have the highest ratio of Firmicutes and Bacteroidetes induced by HFD, as well as Ghrelin level in serum and prostate tissue was significantly increased compared with control. Elevated Ghrelin content in the serum and prostate tissue of BPH patients was also observed. Ghrelin promotes cell proliferation while inhibiting cell apoptosis of prostate cells. The effect of Ghrelin on enlargement of the prostate was found almost equivalent to that of testosterone propionate (TP) which may be attenuated by Ghrelin receptor antagonist YIL-781. Ghrelin could up-regulate Jak2/pJak2/Stat3/pStat3 expression in vitro and in vivo. Our results suggested that Gut microbiota may associate with Ghrelin which plays an important role in activation of Jak2/Stat3 in BPH development. Gut microbiota and Ghrelin might be pathogenic factors for BPH and could be used as a target for mediation.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1812 ◽  
Author(s):  
Ju Oh ◽  
Eun Kim ◽  
Yeon-Joo Lee ◽  
Sei Sai ◽  
Sun Lim ◽  
...  

Osteosarcoma (OS) originates from osteoid bone tissues and is prone to metastasis, resulting in a high mortality rate. Although several treatments are available for OS, an effective cure does not exist for most patients with advanced OS. Zoledronic acid (ZOL) is a third-generation bisphosphonate that inhibits osteoclast-mediated bone resorption and has shown efficacy in treating bone metastases in patients with various types of solid tumors. Here, we sought to clarify the mechanisms through which ZOL inhibits OS cell proliferation. ZOL treatment inhibited OS cell proliferation, viability, and colony formation. Autophagy inhibition by RNA interference against Beclin-1 or ATG5 inhibited ZOL-induced OS cell death. ZOL induced autophagy by repressing the protein kinase B/mammalian target of rapamycin/p70S6 kinase pathway and extracellular signal-regulated kinase signaling-dependent autophagy in OS cell lines and patient-derived OS cells. Microarrays of miRNA showed that ZOL increased the levels of miR-212-3p, which is known to play an important role in autophagy, in OS in vitro and in vivo systems. Collectively, our data provided mechanistic insight into how increased miR-212-3p through ZOL treatment induces autophagy synergistically in OS cells, providing a preclinical rationale for conducting a broad-scale clinical evaluation of ZOL + miR-212-3p in treating OS.


2005 ◽  
Vol 25 (15) ◽  
pp. 6314-6329 ◽  
Author(s):  
Joseph Tcherkezian ◽  
Eric I. Danek ◽  
Sarah Jenna ◽  
Ibtissem Triki ◽  
Nathalie Lamarche-Vane

ABSTRACT Rho GTPases regulate multiple cellular processes affecting both cell proliferation and cytoskeletal dynamics. Their cycling between inactive GDP- and active GTP-bound states is tightly regulated by guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). We have previously identified CdGAP (for Cdc42 GTPase-activating protein) as a specific GAP for Rac1 and Cdc42. CdGAP consists of an N-terminal RhoGAP domain and a C-terminal proline-rich region. In addition, CdGAP is a member of the impressively large number of mammalian RhoGAP proteins that is well conserved among both vertebrates and invertebrates. In mice, we find two predominant isoforms of CdGAP differentially expressed in specific tissues. We report here that CdGAP is highly phosphorylated in vivo on serine and threonine residues. We find that CdGAP is phosphorylated downstream of the MEK-extracellular signal-regulated kinase (ERK) pathway in response to serum or platelet-derived growth factor stimulation. Furthermore, CdGAP interacts with and is phosphorylated by ERK-1 and RSK-1 in vitro. A putative DEF (docking for ERK FXFP) domain located in the proline-rich region of CdGAP is required for efficient binding and phosphorylation by ERK1/2. We identify Thr776 as an in vivo target site of ERK1/2 and as an important regulatory site of CdGAP activity. Together, these data suggest that CdGAP is a novel substrate of ERK1/2 and mediates cross talk between the Ras/mitogen-activated protein kinase pathway and regulation of Rac1 activity.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769431 ◽  
Author(s):  
Ying Hu ◽  
Zihan Sun ◽  
Jinmu Deng ◽  
Baoquan Hu ◽  
Wenting Yan ◽  
...  

Increasing evidence has indicated that the splicing factor hnRNPA2B1 plays a direct role in cancer development, progression, gene expression, and signal transduction. Previous studies have shown that knocking down hnRNPA2B1 in breast cancer cells induces apoptosis, but the mechanism and other functions of hnRNPA2B1 in breast cancer are unknown. The goal of this study was to investigate the biological function, clinical significance, and mechanism of hnRNPA2B1 in breast cancer. The expression of hnRNPA2B1 in 92 breast cancer and adjacent normal tissue pairs was analyzed by immunohistochemical staining. Stable clones exhibiting knockdown of hnRNPA2B1 via small hairpin RNA expression were generated using RNA interference technology in breast cancer cell lines. The effects of hnRNPA2B1 on cell proliferation were examined by MTT and EdU assay, and cellular apoptosis and the cell cycle were examined by flow cytometry. A nude mouse xenograft model was established to elucidate the function of hnRNPA2B1 in tumorigenesis in vivo. The role of hnRNPA2B1 in signaling pathways was investigated in vitro. Our data revealed that hnRNPA2B1 was overexpressed in breast cancer tissue specimens and cell lines. Knockdown of hnRNPA2B1 reduced breast cancer cell proliferation, induced apoptosis, and prolonged the S phase of the cell cycle in vitro. In addition, hnRNPA2B1 knockdown suppressed subcutaneous tumorigenicity in vivo. On a molecular level, hnRNPA2B1 knockdown decreased signal transducer and activator of transcription 3 and extracellular-signal-regulated kinase 1/2 phosphorylation. We concluded that hnRNPA2B1 promotes the tumorigenic potential of breast cancer cells, MCF-7 and MDA-MB-231, through the extracellular-signal-regulated kinase 1/2 or signal transducer and activator of transcription 3 pathway, which may serve as a target for future therapies.


Sign in / Sign up

Export Citation Format

Share Document