Excision and replication of extrachromosomal DNA of pea (Pisum sativum)

1983 ◽  
Vol 3 (2) ◽  
pp. 172-181
Author(s):  
J Van't Hof ◽  
C A Bjerknes ◽  
N C Delihas

Experiments with cultured pea roots were conducted to determine (i) whether extrachromosomal DNA was produced by cells in the late S phase or in the G2 phase of the cell cycle, (ii) whether the maturation of nascent DNA replicated by these cells achieved chromosomal size, (iii) when extrachromosomal DNA was removed from the chromosomal duplex, and (iv) the replication of nascent chains by the extrachromosomal DNA after its release from the chromosomal duplex. Autoradiography and cytophotometry of cells of carbohydrate-starved root tips revealed that extrachromosomal DNA was produced by a small fraction of cells accumulated in the late S phase after they had replicated about 80% of their DNA. Velocity sedimentation of nascent chromosomal DNA in alkaline sucrose gradients indicated that the DNA of cells in the late S phase failed to achieve chromosomal size. After reaching sizes of 70 X 10(6) to 140 X 10(6) daltons, some of the nascent chromosomal molecules were broken, presumably releasing extrachromosomal DNA several hours later. Sedimentation of selectively extracted extrachromosomal DNA either from dividing cells or from those in the late S phase showed that it replicated two nascent chains, one of 3 X 10(6) daltons and another of 7 X 10(6) daltons. Larger molecules of extrachromosomal DNA were detectable after cells were labeled for 24 h. These two observations were compatible with the idea that the extrachromosomal DNA was first replicated as an integral part of the chromosomal duplex, was cut from the duplex, and then, once free of the chromosome, replicated two smaller chains of 3 X 10(6) and 7 X 10(6) daltons.

1983 ◽  
Vol 3 (2) ◽  
pp. 172-181 ◽  
Author(s):  
J Van't Hof ◽  
C A Bjerknes ◽  
N C Delihas

Experiments with cultured pea roots were conducted to determine (i) whether extrachromosomal DNA was produced by cells in the late S phase or in the G2 phase of the cell cycle, (ii) whether the maturation of nascent DNA replicated by these cells achieved chromosomal size, (iii) when extrachromosomal DNA was removed from the chromosomal duplex, and (iv) the replication of nascent chains by the extrachromosomal DNA after its release from the chromosomal duplex. Autoradiography and cytophotometry of cells of carbohydrate-starved root tips revealed that extrachromosomal DNA was produced by a small fraction of cells accumulated in the late S phase after they had replicated about 80% of their DNA. Velocity sedimentation of nascent chromosomal DNA in alkaline sucrose gradients indicated that the DNA of cells in the late S phase failed to achieve chromosomal size. After reaching sizes of 70 X 10(6) to 140 X 10(6) daltons, some of the nascent chromosomal molecules were broken, presumably releasing extrachromosomal DNA several hours later. Sedimentation of selectively extracted extrachromosomal DNA either from dividing cells or from those in the late S phase showed that it replicated two nascent chains, one of 3 X 10(6) daltons and another of 7 X 10(6) daltons. Larger molecules of extrachromosomal DNA were detectable after cells were labeled for 24 h. These two observations were compatible with the idea that the extrachromosomal DNA was first replicated as an integral part of the chromosomal duplex, was cut from the duplex, and then, once free of the chromosome, replicated two smaller chains of 3 X 10(6) and 7 X 10(6) daltons.


1982 ◽  
Vol 2 (4) ◽  
pp. 339-345
Author(s):  
J Van't Hof ◽  
C A Bjerknes

Velocity sedimentation in an alkaline sucrose gradient of newly replicated chromosomal DNA revealed the presence of extrachromosomal DNA that was not replicated by differentiating cells in the elongation zone. The extrachromosomal DNA had a number average molecular weight of 12 X 10(6) to 15 X 10(6) and a weight average molecular weight of 25 X 10(6), corresponding to about 26 X 10(6) and 50 X 10(6) daltons, respectively, of double-stranded DNA. The molecules were stable, lasting at least 72 h after being formed. Concurrent measurements by velocity sedimentation, autoradiography, and cytophotometry of isolated nuclei indicated that the extrachromosomal molecules were associated with root-tip cells that stopped dividing and differentiated from G2 phase but not with those that stopped dividing and differentiated from G1 phase.


1982 ◽  
Vol 2 (4) ◽  
pp. 339-345 ◽  
Author(s):  
J Van't Hof ◽  
C A Bjerknes

Velocity sedimentation in an alkaline sucrose gradient of newly replicated chromosomal DNA revealed the presence of extrachromosomal DNA that was not replicated by differentiating cells in the elongation zone. The extrachromosomal DNA had a number average molecular weight of 12 X 10(6) to 15 X 10(6) and a weight average molecular weight of 25 X 10(6), corresponding to about 26 X 10(6) and 50 X 10(6) daltons, respectively, of double-stranded DNA. The molecules were stable, lasting at least 72 h after being formed. Concurrent measurements by velocity sedimentation, autoradiography, and cytophotometry of isolated nuclei indicated that the extrachromosomal molecules were associated with root-tip cells that stopped dividing and differentiated from G2 phase but not with those that stopped dividing and differentiated from G1 phase.


1986 ◽  
Vol 6 (2) ◽  
pp. 601-606
Author(s):  
S Dalton ◽  
J R Coleman ◽  
J R Wells

Levels of the tissue-specific linker histone H5 are elevated in mature erythroid cells as compared with levels in dividing cells of the same lineage. We examined levels of H5 mRNA in relation to the cell cycle in early erythroid cells transformed by avian erythroblastosis virus to determine whether the gene for this unusual histone is S-phase regulated. Northern blotting analyses revealed that during the cell cycle steady-state levels of H5 mRNA remained relatively constant in contrast to levels of the major core and H1 mRNAs which increased approximately 15-fold during S phase. In vitro pulse-labeling experiments involving nuclei isolated from synchronized cells at various stages of the cell cycle revealed that transcription of the H5 gene was not initiated at any particular stage of the cell cycle but was constitutive. In contrast, transcription of the H2A gene(s) initiated in early S phase, was present throughout the DNA replicative phase, and was essentially absent in G1 and G2 phases.


1985 ◽  
Vol 225 (2) ◽  
pp. 529-533 ◽  
Author(s):  
A J Strain ◽  
W A H Wallace ◽  
A H Wyllie

Synchronized CV-1 cells were transfected with SV40 (simian virus 40) DNA-calcium phosphate co-precipitates. In the presence of carrier DNA, the transfection efficiency of SV40 DNA was decreased 5-fold in S-phase cells and was increased 4-fold in preparations of mitotically enriched cells as compared with asynchronous controls. No difference was observed when carrier DNA was omitted, when cells had progressed through S-phase and into G2-phase, or when the infectivity of cells to intact SV40 virus was tested. These results highlight the importance of cell-cycle-dependent factors on DNA-mediated gene transfer.


Author(s):  
Deqin Kong ◽  
Rui Liu ◽  
Jiangzheng Liu ◽  
Qingbiao Zhou ◽  
Jiaxin Zhang ◽  
...  

Cubic membranes (CMs) represent unique biological membrane structures with highly curved three-dimensional periodic minimal surfaces, which have been observed in a wide range of cell types and organelles under various stress conditions (e. g., starvation, virus-infection, and oxidation). However, there are few reports on the biological roles of CMs, especially their roles in cell cycle. Hence, we established a stable cell population of human hepatocellular carcinoma cells (HepG2) of 100% S phase by thymidine treatment, and determined certain parameters in G2 phase released from S phase. Then we found a close relationship between CMs formation and cell cycle, and an increase in reactive oxygen species (ROS) and mitochondrial function. After the synchronization of HepG2 cells were induced, CMs were observed through transmission electron microscope in G2 phase but not in G1, S and M phase. Moreover, the increased ATP production, mitochondrial and intracellular ROS levels were also present in G2 phase, which demonstrated a positive correlation with CMs formation by Pearson correlation analysis. This study suggests that CMs may act as an antioxidant structure in response to mitochondria-derived ROS during G2 phase and thus participate in cell cycle progression.


2020 ◽  
Author(s):  
Gee In Jung ◽  
Kunsoo Rhee

ABSTRACTCancer cells frequently include supernumerary centrioles. Here, we generated TP53;PCNT;CEP215 triple knockout cell lines and observed precocious separation and amplification of the centrioles at M phase. Many of the triple KO cells maintained supernumerary centrioles throughout the cell cycle. The M-phase-assembled centrioles lack an ability to function as templates for centriole assembly during S phase. They also lack an ability to organize microtubules in interphase. However, we found that a fraction of them acquired an ability to organize microtubules during M phase. Our works provide an example how supernumerary centrioles behave in dividing cells.


1988 ◽  
Vol 8 (10) ◽  
pp. 4576-4578 ◽  
Author(s):  
S Dalton ◽  
J R Wells

Levels of trans-acting factor (H1-SF) binding to the histone H1 gene-specific motif (5'-AAACACA-3' [L. S. Coles and J. R. E. Wells, Nucleic Acids Res. 13:585-594, 1985]) increase 12-fold from G1 to S-phase in synchronized cells and decrease again in G2 phase of the cell cycle. Since the H1 element is required for S-phase expression of H1 genes (S. Dalton and J. R. E. Wells, EMBO J. 7:49-56, 1988), it is likely that the increased levels of H1-SF binding component play an important role in S-phase regulation of H1 gene transcription.


Development ◽  
1983 ◽  
Vol 74 (1) ◽  
pp. 183-206
Author(s):  
Kirstie A. Lawson

Epithelia from lung rudiments in which secondary bronchial buds are already established (14th and 13th gestational day for rat and mouse respectively) are able to undergo branching morphogenesis and cytodifferentiation in submandibular mesenchyme in vitro, whereas lung epithelium from one day younger foetuses rarely gives a morphogenetic response to submandibular mesenchyme and usually differentiates into primary (non-budding) bronchial epithelium. The failure of 13-day rat lung epithelium to respond to submandibular mesenchyme can be prevented by peeling off the submandibular mesenchyme from the lung epithelium after 2½ days culture and replacing the same mesenchyme, or renewing it with fresh salivary mesenchyme ex vivo. Changes in the epithelial contour are visible by 10 h and buds form within 24 h; this is followed by branching morphogenesis in more than 66% of the samples. The number of cells in S-phase in the epithelium is doubled within 3 to 5 h after the operation and the number of mitotic cells (colchicine block) is increased during an 11 to 19 h period after the operation. Substituting stomach mesenchyme for submandibular mesenchyme after the operation failed to elicit morphogenesis or an increase in the number of S-phase cells in the epithelium. The proportion of epithelial cells in S-phase in unoperated recombinates does not differ from the proportion in the primary bronchial epithelium (non-budding) of homotypic lung recombinates, whereas the proportion of S-phase cells in operated recombinates approaches that found in the buds of homotypic lung recombinates. The distribution of S-phase cells in visibly responding recombinates 15 to 17 h after operation shows the same heterogeneity as in homotypic lung recombinates, newly formed buds having twice as many cells labelled with [3H]thymidine as the non-budding area. Cell cycle parameters of intact rat lung growing in vitro were estimated using the labelled mitoses method. Primary bronchial epithelium and bronchial buds both had a total cell cycle time of about 13 h and an S-phase of about 10 h. The growth fraction was 0·54 in the primary bronchus and 0·95 in the buds. It is suggested that, also in the recombinates, differences in the proportion of S-phase cells at any one time in morphogenetically active and inactive areas of the epithelium are due to differences in the growth fraction. It is concluded that an early event in the morphogenetic response of lung epithelium to submandibular mesenchyme after removing and restoring the mesenchyme is an increase in the size of the population of dividing cells and it is suggested that a high proportion of dividing cells in an epithelial population is a prerequisite for further interaction of epithelium and mesenchyme leading to branching morphogenesis.


1990 ◽  
Vol 110 (4) ◽  
pp. 939-945 ◽  
Author(s):  
S Dübel ◽  
H C Schaller

Using bromodeoxyuridine incorporation to label cells in S phase we found that ectodermal epithelial cells of Hydra can start and complete their terminal differentiation in the G2 phase of the cell cycle. Most of the cells traversed their last S phase before the signal for differentiation, namely excision of head or foot, was given. The S phase inhibitor aphidicolin accordingly did not inhibit head or foot specific differentiation. The results show that differentiation to either head- or foot-specific ectodermal epithelial cells can start and is completed within the same G2 phase. This is therefore the first description of a complete differentiation from a population of proliferating cells to terminally differentiated, cell cycle-arrested cells without the necessity of passing through an S phase or mitosis.


Sign in / Sign up

Export Citation Format

Share Document