Expression of hamster P-glycoprotein and multidrug resistance in DNA-mediated transformants of mouse LTA cells

1987 ◽  
Vol 7 (2) ◽  
pp. 718-724
Author(s):  
K L Deuchars ◽  
R P Du ◽  
M Naik ◽  
D Evernden-Porelle ◽  
N Kartner ◽  
...  

The overexpression of a plasma membrane glycoprotein, P-glycoprotein, is strongly correlated with the expression of multidrug resistance. This phenotype (frequently observed in cell lines selected for resistance to a single drug) is characterized by cross resistance to many drugs, some of which are used in cancer chemotherapy. In the present study we showed that DNA-mediated transformants of mouse LTA cells with DNA from multidrug-resistant hamster cells acquired the multidrug resistance phenotype, that the transformants contained hamster P-glycoprotein DNA sequences, that these sequences were amplified whereas the recipient mouse P-glycoprotein sequences remained at wild-type levels, and that the overexpressed P-glycoprotein in these cells was of hamster origin. Furthermore, we showed that the hamster P-glycoprotein sequences were transfected independently of a group of genes that were originally coamplified and linked within a 1-megabase-pair region in the donor hamster genome. These data indicate that the high expression of P-glycoprotein is the only alteration required to mediate multidrug resistance.

1987 ◽  
Vol 7 (2) ◽  
pp. 718-724 ◽  
Author(s):  
K L Deuchars ◽  
R P Du ◽  
M Naik ◽  
D Evernden-Porelle ◽  
N Kartner ◽  
...  

The overexpression of a plasma membrane glycoprotein, P-glycoprotein, is strongly correlated with the expression of multidrug resistance. This phenotype (frequently observed in cell lines selected for resistance to a single drug) is characterized by cross resistance to many drugs, some of which are used in cancer chemotherapy. In the present study we showed that DNA-mediated transformants of mouse LTA cells with DNA from multidrug-resistant hamster cells acquired the multidrug resistance phenotype, that the transformants contained hamster P-glycoprotein DNA sequences, that these sequences were amplified whereas the recipient mouse P-glycoprotein sequences remained at wild-type levels, and that the overexpressed P-glycoprotein in these cells was of hamster origin. Furthermore, we showed that the hamster P-glycoprotein sequences were transfected independently of a group of genes that were originally coamplified and linked within a 1-megabase-pair region in the donor hamster genome. These data indicate that the high expression of P-glycoprotein is the only alteration required to mediate multidrug resistance.


1987 ◽  
Vol 5 (9) ◽  
pp. 1452-1460 ◽  
Author(s):  
J H Gerlach ◽  
D R Bell ◽  
C Karakousis ◽  
H K Slocum ◽  
N Kartner ◽  
...  

Overexpression of an immunologically conserved, cell-surface glycoprotein (P-glycoprotein) is consistently associated with multidrug resistance in cell lines in vitro. A preliminary survey of specimens from 12 solid tumor types in our laboratories indicates significant overexpression of P-glycoprotein in some sarcomas. When tested by immunoblotting with monoclonal antibodies directed against P-glycoprotein; tumors from six of 25 sarcoma patients displayed elevated levels of P-glycoprotein. Three of the sarcoma patients exhibiting P-glycoprotein had not previously been exposed to chemotherapy, implying that overexpression of this marker and possible concomitant multidrug resistance may not depend only on selection during prior drug treatments. The P-glycoprotein overexpression in the sarcoma specimens is evidence for the presence of multidrug resistant cells in these tumors; thus, our data suggest that this mode of resistance may have clinical significance in sarcoma patients.


2020 ◽  
Vol 13 (12) ◽  
pp. 453
Author(s):  
Małgorzata Anna Marć ◽  
Annamária Kincses ◽  
Bálint Rácz ◽  
Muhammad Jawad Nasim ◽  
Muhammad Sarfraz ◽  
...  

Multidrug resistance of cancer cells to cytotoxic drugs still remains a major obstacle to the success of chemotherapy in cancer treatment. The development of new drug candidates which may serve as P-glycoprotein (P-gp) efflux pump inhibitors is a promising strategy. Selenium analogues of natural products, such as flavonoids, offer an interesting motif from the perspective of drug design. Herein, we report the biological evaluation of novel hybrid compounds, bearing both the flavone core (compounds 1–3) or a bioisosteric analogue core (compounds 4–6) and the triflyl functional group against Gram-positive and Gram-negative bacteria, yeasts, nematodes, and human colonic adenocarcinoma cells. Results show that these flavones and analogues of flavones inhibited the activity of multidrug resistance (MDR) efflux pump ABCB1 (P-glycoprotein, P-gp). Moreover, the results of the rhodamine 123 accumulation assay demonstrated a dose-dependent inhibition of the abovementioned efflux pump. Three compounds (4, 5, and 6) exhibited potent inhibitory activity, much stronger than the positive control, verapamil. Thus, these chalcogen bioisosteric analogues of flavones become an interesting class of compounds which could be considered as P-gp efflux pump inhibitors in the therapy of MDR cancer. Moreover, all the compounds served as promising adjuvants in the cancer treatment, since they exhibited the P-gp efflux pump modulating activity.


1986 ◽  
Vol 6 (11) ◽  
pp. 3785-3790 ◽  
Author(s):  
P Gros ◽  
D A Fallows ◽  
J M Croop ◽  
D E Housman

Multidrug resistance can be transferred from drug-resistant LZ Chinese hamster cells to drug-susceptible mouse LTA cells by chromosome-mediated gene transfer. Analysis of genomic DNA demonstrated the transfer of multiple copies of a DNA domain which is amplified in the donor multidrug-resistant cells. The transfer of 10 to 15 copies of the Chinese hamster gene was sufficient to produce a multidrug-resistant phenotype. Chromosome transferents exhibited overexpression of an mRNA of approximately 5 kilobases which has previously been demonstrated to be encoded by the amplified DNA domain of the donor LZ cells. Phenotypic analysis of individual clones selected in adriamycin showed the resistance to be pleiotropic. All clones tested demonstrated similar levels of cross-resistance to the drugs daunorubicin and colchicine. These results indicate that the DNA sequences transferred confer the complete multidrug-resistant phenotype on recipient cells and suggest that multidrug resistance is due to overexpression of the protein encoded by the 5-kilobase mRNA.


1997 ◽  
Vol 53 (12) ◽  
pp. 1855-1866 ◽  
Author(s):  
Baukelien van Triest ◽  
Herbert M. Pinedo ◽  
Frank Telleman ◽  
Clasina L. van der Wilt ◽  
Gerrit Jansen ◽  
...  

1986 ◽  
Vol 6 (11) ◽  
pp. 3785-3790
Author(s):  
P Gros ◽  
D A Fallows ◽  
J M Croop ◽  
D E Housman

Multidrug resistance can be transferred from drug-resistant LZ Chinese hamster cells to drug-susceptible mouse LTA cells by chromosome-mediated gene transfer. Analysis of genomic DNA demonstrated the transfer of multiple copies of a DNA domain which is amplified in the donor multidrug-resistant cells. The transfer of 10 to 15 copies of the Chinese hamster gene was sufficient to produce a multidrug-resistant phenotype. Chromosome transferents exhibited overexpression of an mRNA of approximately 5 kilobases which has previously been demonstrated to be encoded by the amplified DNA domain of the donor LZ cells. Phenotypic analysis of individual clones selected in adriamycin showed the resistance to be pleiotropic. All clones tested demonstrated similar levels of cross-resistance to the drugs daunorubicin and colchicine. These results indicate that the DNA sequences transferred confer the complete multidrug-resistant phenotype on recipient cells and suggest that multidrug resistance is due to overexpression of the protein encoded by the 5-kilobase mRNA.


2019 ◽  
Vol 11 (16) ◽  
pp. 2095-2106 ◽  
Author(s):  
Alexander A Titov ◽  
Mauro Niso ◽  
Modesto de Candia ◽  
Maxim S Kobzev ◽  
Alexey V Varlamov ◽  
...  

Aim: Enamino 3-benzazecine compounds, incorporating the C6-C8 allene system, were synthesized and evaluated in vitro as inhibitors of P-glycoprotein (P-gp) and/or multidrug resistance-associated protein 1 (MRP1), two efflux pumps mainly connected with multidrug resistance (MDR) in cancer cells. Results & methodology: Most of the synthesized compounds were selective P-gp inhibitors in Calcein-AM uptake assay. Structure–activity relationships (SARs) pointed out that CO2Me derivatives are more potent than acetyl derivatives, and 10,11-dimethoxy compounds are five to tenfold more potent inhibitors than the respective unsubstituted compounds, and that the P-gp inhibition potency is mainly related to volume parameters. Conclusion: Nanomolar P-gp inhibitors, such as 23 (IC50 = 4.2 nM), restored the antiproliferative activity of doxorubicin in multidrug-resistant cells. The observed activities showed that 3-benzazecine-based compounds may be promising MDR reversers.


2001 ◽  
Vol 45 (9) ◽  
pp. 2468-2474 ◽  
Author(s):  
José M. Pérez-Victoria ◽  
F. Javier Pérez-Victoria ◽  
Adriana Parodi-Talice ◽  
Ignacio A. Jiménez ◽  
Angel G. Ravelo ◽  
...  

ABSTRACT Drug resistance has emerged as a major impediment in the treatment of leishmaniasis. Alkyl-lysophospholipids (ALP), originally developed as anticancer drugs, are considered to be the most promising antileishmanial agents. In order to anticipate probable clinical failure in the near future, we have investigated possible mechanisms of resistance to these drugs in Leishmania spp. The results presented here support the involvement of a member of the ATP-binding cassette (ABC) superfamily, the LeishmaniaP-glycoprotein-like transporter, in the resistance to ALP. (i) First, a multidrug resistance (MDR) Leishmania tropicaline overexpressing a P-glycoprotein-like transporter displays significant cross-resistance to the ALP miltefosine and edelfosine, with resistant indices of 9.2- and 7.1-fold, respectively. (ii) Reduced expression of P-glycoprotein in the MDR line correlates with a significant decrease in ALP resistance. (iii) The ALP were able to modulate the P-glycoprotein-mediated resistance to daunomycin in the MDR line. (iv) We have found a new inhibitor of this transporter, the sesquiterpene C-3, that completely sensitizes MDR parasites to ALP. (v) Finally, the MDR line exhibits a lower accumulation than the wild-type line of bodipy-C5-PC, a fluorescent analogue of phosphatidylcholine that has a structure resembling that of edelfosine. Also, C-3 significantly increases the accumulation of the fluorescent analogue to levels similar to those of wild-type parasites. The involvement of the LeishmaniaP-glycoprotein-like transporter in resistance to drugs used in the treatment of leishmaniasis also supports the importance of developing new specific inhibitors of this ABC transporter.


RSC Advances ◽  
2016 ◽  
Vol 6 (114) ◽  
pp. 113173-113184 ◽  
Author(s):  
Jiulong Zhang ◽  
Yue Luo ◽  
Xiufeng Zhao ◽  
Xiaowei Li ◽  
Kexin Li ◽  
...  

At present, multidrug resistance (MDR) in cancer therapy is an international problem, which is caused mostly by the overexpressed P-glycoprotein (P-gp) efflux pump.


2012 ◽  
Vol 32 (6) ◽  
pp. 559-566 ◽  
Author(s):  
Yan Xu ◽  
Feng Zhi ◽  
Guangming Xu ◽  
Xiaolei Tang ◽  
Sheng Lu ◽  
...  

MDR (multidrug-resistance) represents a major obstacle to successful cancer chemotherapy and is usually accomplished by overexpression of P-gp (P-glycoprotein). Much effort has been devoted to developing P-gp inhibitors to modulate MDR. However, none of the inhibitors on the market have been successful. 1416 [1-(2,6-dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino)propane hydrochloride (phenoprolamine hydrochloride)] is a new VER (verapamil) analogue with a higher IC50 for blocking calcium channel currents than VER. In the present paper, we examined the inhibition effect of 1416 on P-gp both in vitro and in vivo. 1416 significantly enhanced cytotoxicity of VBL (vinblastine) in P-gp-overexpressed human multidrug-resistant K562/ADM (adriamycin) and KBV cells, but had no such effect on the parent K562 and KB cells. The MDR-modulating function of 1416 was further confirmed by increasing intracellular Rh123 (rhodanmine123) content in MDR cells. Human K562/ADM xenograft-nude mice model verified that 1416 potentiates the antitumour activity of VBL in vivo. RT-PCR (reverse transcriptase-PCR) and FACS analysis demonstrated that the expression of MDR1/P-gp was not affected by 1416 treatment. All these observations suggest that 1416 could be a promising agent for overcoming MDR in cancer chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document