scholarly journals Expression of small cytoplasmic transcripts of the rat identifier element in vivo and in cultured cells.

1987 ◽  
Vol 7 (6) ◽  
pp. 2148-2154 ◽  
Author(s):  
R D McKinnon ◽  
P Danielson ◽  
M A Brow ◽  
F E Bloom ◽  
J G Sutcliffe

We examined the level of expression of small RNA transcripts hybridizing to a rodent repetitive DNA element, the identifier (ID) sequence, in a variety of cell types in vivo and in cultured mammalian cells. A 160-nucleotide (160n) cytoplasmic poly(A)+ RNA (BC1) appeared in late embryonic and early postnatal rat brain development, was enriched in the cerebral cortex, and appeared to be restricted to neural tissue and the anterior pituitary gland. A 110n RNA (BC2) was specifically enriched in brain, especially the postnatal cortex, but was detectable at low levels in peripheral tissues. A third, related 75n poly(A)- RNA (T3) was found in rat brain and at lower levels in peripheral tissues but was very abundant in the testes. The BC RNAs were found in a variety of rat cell lines, and their level of expression was dependent upon cell culture conditions. A rat ID probe detected BC-like RNAs in mouse brain but not liver and detected a 200n RNA in monkey brain but not liver at lower hybridization stringencies. These RNAs were expressed by mouse and primate cell lines. Thus, tissue-specific expression of small ID-sequence-related transcripts is conserved among mammals, but the tight regulation found in vivo is lost by cells in culture.

1987 ◽  
Vol 7 (6) ◽  
pp. 2148-2154
Author(s):  
R D McKinnon ◽  
P Danielson ◽  
M A Brow ◽  
F E Bloom ◽  
J G Sutcliffe

We examined the level of expression of small RNA transcripts hybridizing to a rodent repetitive DNA element, the identifier (ID) sequence, in a variety of cell types in vivo and in cultured mammalian cells. A 160-nucleotide (160n) cytoplasmic poly(A)+ RNA (BC1) appeared in late embryonic and early postnatal rat brain development, was enriched in the cerebral cortex, and appeared to be restricted to neural tissue and the anterior pituitary gland. A 110n RNA (BC2) was specifically enriched in brain, especially the postnatal cortex, but was detectable at low levels in peripheral tissues. A third, related 75n poly(A)- RNA (T3) was found in rat brain and at lower levels in peripheral tissues but was very abundant in the testes. The BC RNAs were found in a variety of rat cell lines, and their level of expression was dependent upon cell culture conditions. A rat ID probe detected BC-like RNAs in mouse brain but not liver and detected a 200n RNA in monkey brain but not liver at lower hybridization stringencies. These RNAs were expressed by mouse and primate cell lines. Thus, tissue-specific expression of small ID-sequence-related transcripts is conserved among mammals, but the tight regulation found in vivo is lost by cells in culture.


1996 ◽  
Vol 314 (3) ◽  
pp. 839-845 ◽  
Author(s):  
Minna M. MIETTINEN ◽  
Mika V. J. MUSTONEN ◽  
Matti H. POUTANEN ◽  
Veli V. ISOMAA ◽  
Reijo K. VIHKO

17β-Hydroxysteroid dehydrogenase (17HSD) isoenzymes catalyse the interconversion between highly active 17β-hydroxy-and low-activity 17-keto-steroids and thereby regulate the biological activity of sex steroids. The present study was carried out to characterize 17HSD activity and the expression of 17HSD type 1 and 2 isoenzymes in several human cell types and tissues. The data indicate that in cultured cells the direction of 17HSD activity is exclusively determined by the expression of these distinct isoenzymes. The intracellular environment could not modulate the direction of the enzyme activities in any of the cell types analysed. 17HSD type 1 acts as a reductase converting oestrone into oestradiol, whereas 17HSD type 2 possesses oxidative activity inactivating oestradiol by converting it into oestrone. The data, furthermore, suggest that of the two 17HSD type 1 mRNAs (1.3 and 2.3 kb), expression of the 1.3 kb mRNA is related to enzyme concentration in all the cell types studied. This mRNA is principally expressed in cells of placental and ovarian origin, but is also present in malignant breast epithelial cells. In contrast, 17HSD type 2 is more widely expressed. It is present in several oestradiol-metabolizing tissues as well as in some target cells of sex steroid action. The opposite reaction directions observed in the cultured cells, together with differences in the distribution of the isoenzymes, suggest that type 1 is involved in oestradiol production in females while type 2 plays a role in the inactivation of this sex steroid in peripheral tissues, both in females and in males. However, some examples exist of simultaneous expression of both enzymes in the same cell type or tissue.


1990 ◽  
Vol 10 (11) ◽  
pp. 5646-5654 ◽  
Author(s):  
P A Garrity ◽  
B J Wold

We have found that the mouse metallothionein-I (MT-I) gene promoter functions in an unusual, compound manner. It directs both TATA-dependent and TATA-independent modes of transcription in vivo. The TATA-dependent message is initiated at the previously characterized +1 transcription start site and is the predominant species in most tissues. In many cell types it is metal inducible. The TATA-independent initiation sites are distributed over the 160 bp upstream of the previously characterized +1 start site, and the RNA products are present in all tissues examined. Only in testis, however, do the TATA-independent transcripts predominate, accumulating to highest levels in pachytene-stage meiotic cells and early spermatids. Unlike the TATA-dependent +1 transcript, these RNAs are not induced by metal, even in cultured cells in which the +1 species is induced. Transfection studies of site-directed mutants show that destruction of the TATA element drastically alters the ratio of the two RNA classes in cells in which the +1 transcripts normally dominates. In TATA-minus mutants, the TATA-independent RNAs become the most prevalent, although they remain refractory to metal induction. Thus, the MT-I promoter utilizes two different types of core promoter function within a single cell population. The two different types of core promoter respond very differently to environmental stimuli, and the choice between them appears to be regulated in a tissue-specific fashion.


2019 ◽  
Author(s):  
Ryan A. Flynn ◽  
Benjamin A. H. Smith ◽  
Alex G. Johnson ◽  
Kayvon Pedram ◽  
Benson M. George ◽  
...  

ABSTRACTGlycans modify lipids and proteins to mediate inter- and intramolecular interactions across all domains of life. RNA, another multifaceted biopolymer, is not thought to be a major target of glycosylation. Here, we challenge this view with evidence that mammalian cells use RNA as a third scaffold for glycosylation in the secretory pathway. Using a battery of chemical and biochemical approaches, we find that a select group of small noncoding RNAs including Y RNAs are modified with complex, sialylated N-glycans (glycoRNAs). These glycoRNA are present in multiple cell types and mammalian species, both in cultured cells andin vivo. Finally, we find that RNA glycosylation depends on the canonical N-glycan biosynthetic machinery within the ER/Golgi luminal spaces. Collectively, these findings suggest the existence of a ubiquitous interface of RNA biology and glycobiology suggesting an expanded role for glycosylation beyond canonical lipid and protein scaffolds.


1990 ◽  
Vol 10 (11) ◽  
pp. 5646-5654
Author(s):  
P A Garrity ◽  
B J Wold

We have found that the mouse metallothionein-I (MT-I) gene promoter functions in an unusual, compound manner. It directs both TATA-dependent and TATA-independent modes of transcription in vivo. The TATA-dependent message is initiated at the previously characterized +1 transcription start site and is the predominant species in most tissues. In many cell types it is metal inducible. The TATA-independent initiation sites are distributed over the 160 bp upstream of the previously characterized +1 start site, and the RNA products are present in all tissues examined. Only in testis, however, do the TATA-independent transcripts predominate, accumulating to highest levels in pachytene-stage meiotic cells and early spermatids. Unlike the TATA-dependent +1 transcript, these RNAs are not induced by metal, even in cultured cells in which the +1 species is induced. Transfection studies of site-directed mutants show that destruction of the TATA element drastically alters the ratio of the two RNA classes in cells in which the +1 transcripts normally dominates. In TATA-minus mutants, the TATA-independent RNAs become the most prevalent, although they remain refractory to metal induction. Thus, the MT-I promoter utilizes two different types of core promoter function within a single cell population. The two different types of core promoter respond very differently to environmental stimuli, and the choice between them appears to be regulated in a tissue-specific fashion.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ana Margarida Campos ◽  
Genoveffa Nuzzo ◽  
Alessia Varone ◽  
Paola Italiani ◽  
Diana Boraschi ◽  
...  

Glycerophosphoinositols (GPIs) are water-soluble bioactive phospholipid derivatives of increasing interest as intracellular and paracrine mediators of eukaryotic cell functions. The most representative compound of the family is glycerophosphoinositol (GroPIns), an ubiquitous component of mammalian cells that participates in cell proliferation, cell survival and cell response to stimuli. Levels and activity of this compound vary among cell types and deciphering these functions requires accurate measurements in in vitro and in vivo models. The conventional approaches for the analysis of GroPIns pose several issues in terms of sensitivity and product resolution, especially when the product is in the extracellular milieu. Here we present an UPLC-MS study for the quantitative analysis of this lipid derivative in cells and, for the first time, culture supernatants. The method is based on a solid-phase extraction that allows for fast desalting and analyte concentration. The robustness of the procedure was tested on the simultaneous measurements of intra- and extracellular levels of GroPIns in a number of human cell lines where it has been shown that the non-transformed cells are characterized by high extracellular level of GroPIns, whereas the tumor cells tended to have higher intracellular levels.


2021 ◽  
Vol 12 (2) ◽  
pp. 2548-2559

Nanoparticle and nanomaterial-based treatments have improved a lot recently in terms of bioavailability, effectiveness, and reduced toxic and side effects. Many studies found a protective effect of fullerene C60 derivatives as potent free radical scavengers in biological systems and also showed neuroprotective properties when tested on in vivo models of ischemic stroke. This study assessed the antioxidant effects of Nanosof® powder suspension, an oxygenated fullerene compound, on various cell types exposed to exogenous free oxygen radicals. Cor.4U® cardiomyocytes and bEnd.3, BV-2, HEK293/hERG1 cell lines were treated with Nanosof® powder suspension alone or during exposure to 100 µM H2O2 for 24 h, in order to check the nanoparticle capacity to neutralize reactive oxygen species, using MTS or MTT to assess viability. We found no significant change in the viability of cells treated with Nanosof® compared to control. In the presence of H2O2, Nanosof® increased cell viability compared to H2O2 exposure alone. Nanosof® treatment showed no side effect; moreover, it exerted a protective effect on all three tested cell lines and Cor.4U® cardiomyocytes, indicating that treatment with this oxygenated fullerene may benefit various conditions.


Author(s):  
Sylvie Polak-Charcon ◽  
Mehrdad Hekmati ◽  
Yehuda Ben Shaul

The epithelium of normal human colon mucosa “in vivo” exhibits a gradual pattern of differentiation as undifferentiated stem cells from the base of the crypt of “lieberkuhn” rapidly divide, differentiate and migrate toward the free surface. The major differentiated cell type of the intestine observed are: absorptive cells displaying brush border, goblet cells containing mucous granules, Paneth and endocrine cells containing dense secretory granules. These different cell types are also found in the intestine of the 13-14 week old embryo.We present here morphological evidence showing that HT29, an adenocarcinoma of the human colon cell line, can differentiate into various cell types by changing the growth and culture conditions and mimic morphological changes found during development of the intestine in the human embryo.HT29 cells grown in tissue-culture dishes in DMEM and 10% FCS form at late confluence a multilayer of morphologically undifferentiated cell culture covered with irregular microvilli, and devoid of tight junctions (Figs 1-3).


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lourdes G. Talavera-Aguilar ◽  
Reyes A. Murrieta ◽  
Sungmin Kiem ◽  
Rosa C. Cetina-Trejo ◽  
Carlos M. Baak-Baak ◽  
...  

Abstract Background Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) with an urban transmission cycle that primarily involves humans and Aedes aegypti. Evidence suggests that the evolution of some arboviruses is constrained by their dependency on alternating between disparate (vertebrate and invertebrate) hosts. The goals of this study are to compare the genetic changes that occur in ZIKV after serial passaging in mosquito or vertebrate cell lines or alternate passaging in both cell types and to compare the replication, dissemination, and transmission efficiencies of the cell culture-derived viruses in Ae. aegypti. Methods An isolate of ZIKV originally acquired from a febrile patient in Yucatan, Mexico, was serially passaged six times in African green monkey kidney (Vero) cells or Aedes albopictus (C6/36) cells or both cell types by alternating passage. A colony of Ae. aegypti from Yucatan was established, and mosquitoes were challenged with the cell-adapted viruses. Midguts, Malpighian tubules, ovaries, salivary glands, wings/legs and saliva were collected at various times after challenge and tested for evidence of virus infection. Results Genome sequencing revealed the presence of two non-synonymous substitutions in the premembrane and NS1 regions of the mosquito cell-adapted virus and two non-synonymous substitutions in the capsid and NS2A regions of both the vertebrate cell-adapted and alternate-passaged viruses. Additional genetic changes were identified by intrahost variant frequency analysis. Virus maintained by continuous C6/36 cell passage was significantly more infectious in Ae. aegypti than viruses maintained by alternating passage and consecutive Vero cell passage. Conclusions Mosquito cell-adapted ZIKV displayed greater in vivo fitness in Ae. aegypti compared to the other viruses, indicating that obligate cycling between disparate hosts carries a fitness cost. These data increase our understanding of the factors that drive ZIKV adaptation and evolution and underscore the important need to consider the in vivo passage histories of flaviviruses to be evaluated in vector competence studies. Graphic abstract "Image missing"


Author(s):  
Shawn Regis ◽  
Manisha Jassal ◽  
Sina Youssefian ◽  
Nima Rahbar ◽  
Sankha Bhowmick

Fibronectin plays a crucial role in adhesion of several cell types, mainly due to the fact that it is recognized by at least ten different integrin receptors. Since most cell types can bind to fibronectin, it becomes involved in many various biological processes. The interaction of cells with ECM proteins such as fibronectin provides the signals affecting morphology, motility, gene expression, and survival of cells [1]. Fibronectin exists in both soluble and insoluble forms; soluble fibronectin is secreted by cells and exits in cell media or body fluids, whereas insoluble fibronectin exists in tissues or the extracellular matrix of cultured cells [2]. The ability to control adsorption of fibronectin on tissue engineering scaffolds would therefore play a huge role in controlling cell attachment and survival in vivo. This can be achieved through surface functionalization of the scaffolds. The goal of these studies is to use molecular dynamics (MD) simulations to mechanistically understand how fibronectin adsorption is enhanced by surface functionalization of submicron scaffolds.


Sign in / Sign up

Export Citation Format

Share Document