scholarly journals Introduction of new genetic material into human myeloid leukemic blast stem cells by retroviral infection.

1988 ◽  
Vol 8 (2) ◽  
pp. 974-977 ◽  
Author(s):  
L J Smith ◽  
S Benchimol

An amphotropic retroviral vector containing the bacterial neomycin phosphotransferase gene (neo) was used to infect blast cells from patients with acute myeloblastic leukemia. The infected cells acquired a G418-resistant phenotype that was stable as measured in a clonogenic assay and in long-term suspension culture. Thus, gene transfer into stem cells was accomplished by this procedure. This approach for manipulating gene expression in blast stem cells provides a means to assess the roles of a variety of genes in self-renewal, differentiation, and leukemogenesis.

1988 ◽  
Vol 8 (2) ◽  
pp. 974-977
Author(s):  
L J Smith ◽  
S Benchimol

An amphotropic retroviral vector containing the bacterial neomycin phosphotransferase gene (neo) was used to infect blast cells from patients with acute myeloblastic leukemia. The infected cells acquired a G418-resistant phenotype that was stable as measured in a clonogenic assay and in long-term suspension culture. Thus, gene transfer into stem cells was accomplished by this procedure. This approach for manipulating gene expression in blast stem cells provides a means to assess the roles of a variety of genes in self-renewal, differentiation, and leukemogenesis.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2309-2309
Author(s):  
Jian Huang ◽  
Peter S. Klein

Abstract Abstract 2309 Hematopoietic stem cells (HSCs) maintain the ability to self-renew and to differentiate into all lineages of the blood. The signaling pathways regulating hematopoietic stem cell (HSCs) self-renewal and differentiation are not well understood. We are very interested in understanding the roles of glycogen synthase kinase-3 (Gsk3) and the signaling pathways regulated by Gsk3 in HSCs. In our previous study (Journal of Clinical Investigation, December 2009) using loss of function approaches (inhibitors, RNAi, and knockout) in mice, we found that Gsk3 plays a pivotal role in controlling the decision between self-renewal and differentiation of HSCs. Disruption of Gsk3 in bone marrow transiently expands HSCs in a b-catenin dependent manner, consistent with a role for Wnt signaling. However, in long-term repopulation assays, disruption of Gsk3 progressively depletes HSCs through activation of mTOR. This long-term HSC depletion is prevented by mTOR inhibition and exacerbated by b-catenin knockout. Thus GSK3 regulates both Wnt and mTOR signaling in HSCs, with opposing effects on HSC self-renewal such that inhibition of Gsk3 in the presence of rapamycin expands the HSC pool in vivo. In the current study, we found that suppression of the mammalian target of rapamycin (mTOR) pathway, an established nutrient sensor, combined with activation of canonical Wnt/ß-catenin signaling, allows the ex vivo maintenance of human and mouse long-term HSCs under cytokine-free conditions. We also show that combining two clinically approved medications that activate Wnt/ß-catenin signaling and inhibit mTOR increases the number of long-term HSCs in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


2006 ◽  
Vol 103 (9) ◽  
pp. 3304-3309 ◽  
Author(s):  
C. J. Luckey ◽  
D. Bhattacharya ◽  
A. W. Goldrath ◽  
I. L. Weissman ◽  
C. Benoist ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1799-1799
Author(s):  
Ingmar Bruns ◽  
Sebastian Büst ◽  
Akos G. Czibere ◽  
Ron-Patrick Cadeddu ◽  
Ines Brückmann ◽  
...  

Abstract Abstract 1799 Poster Board I-825 Multiple myeloma (MM) patients often present with anemia at the time of initial diagnosis. This has so far only attributed to a physically marrow suppression by the invading malignant plasma cells and the overexpression of Fas-L and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by malignant plasma cells triggering the death of immature erythroblasts. Still the impact of MM on hematopoietic stem cells and their niches is scarcely established. In this study we analyzed highly purified CD34+ hematopoietic stem and progenitor cell subsets from the bone marrow of newly diagnosed MM patients in comparison to normal donors. Quantitative flowcytometric analyses revealed a significant reduction of the megakaryocyte-erythrocyte progenitor (MEP) proportion in MM patients, whereas the percentage of granulocyte-macrophage progenitors (GMP) was significantly increased. Proportions of hematopoietic stem cells (HSC) and myeloid progenitors (CMP) were not significantly altered. We then asked if this is also reflected by clonogenic assays and found a significantly decreased percentage of erythroid precursors (BFU-E and CFU-E). Using Affymetrix HU133 2.0 gene arrays, we compared the gene expression signatures of stem cells and progenitor subsets in MM patients and healthy donors. The most striking findings so far reflect reduced adhesive and migratory potential, impaired self-renewal capacity and disturbed B-cell development in HSC whereas the MEP expression profile reflects decreased in cell cycle activity and enhanced apoptosis. In line we found a decreased expression of the adhesion molecule CD44 and a reduced actin polymerization in MM HSC by immunofluorescence analysis. Accordingly, in vitro adhesion and transwell migration assays showed reduced adhesive and migratory capacities. The impaired self-renewal capacity of MM HSC was functionally corroborated by a significantly decreased long-term culture initiating cell (LTC-IC) frequency in long term culture assays. Cell cycle analyses revealed a significantly larger proportion of MM MEP in G0-phase of the cell cycle. Furthermore, the proportion of apoptotic cells in MM MEP determined by the content of cleaved caspase 3 was increased as compared to MEP from healthy donors. Taken together, our findings indicate an impact of MM on the molecular phenotype and functional properties of stem and progenitor cells. Anemia in MM seems at least partially to originate already at the stem and progenitor level. Disclosures Off Label Use: AML with multikinase inhibitor sorafenib, which is approved by EMEA + FDA for renal cell carcinoma.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2890-2890
Author(s):  
Paul Noordhuis ◽  
Monique Terwijn ◽  
Arjo P Rutten ◽  
Linda Smit ◽  
Gert J. Ossenkoppele ◽  
...  

Abstract Abstract 2890 Response rates of ±80% in Acute Myeloid Leukemia (AML) are observed after conventional therapy but ±30% of patients experience a relapse. In the elderly the outcome is even worse. A small population of therapy resistant leukemia cells, minimal residual disease (MRD), are thought to be responsible for relapse of AML. The leukemic stem cells (LSC) herein have self renewal potential and reside in the CD34+CD38- stem cell compartment and side population (SP) compartment and can be identified via aberrant marker expression and scatter properties. Several markers are identified that show differential expression on AML (stem) cells versus normal hematopoietic stem cells (HSC). Previously we showed that CLEC12A (CLL-1, MICL, KLRL1, DCAL-2) is expressed on blasts of 90% of AML patients with varying expression. Importantly, CLEC12A is expressed on LSC but not on normal HSC (van Rhenen, Blood 110(7), 2007). This unique expression pattern paves the way to develop therapies that potentially eliminate CLEC12A-positive LSC and preserves CLEC12A-negative HSC. Drug-conjugated antibodies (ADCs) targeting CLEC12A and Bispecific T cell Engager (BiTE) scFv-antibodies targeting T-cells to CLEC12A positive cells could be instrumental to achieve this goal. We evaluated the response of AML cells to ADCs conjugated via cleavable and non-cleavable linkers to the maytansine derivates DM1 and DM4 and to the BiTE antibody CLL-1×CD3. ADC activity was assessed by colony formation capacity after 24 hours exposure to 0.1–100 nM ADC in 29 freshly obtained AML samples. The response to the BiTE antibody was tested by flow cytometry in 9 AML samples via induction of apoptosis (Annexin V/7AAD) after 24 hours exposure. To determine the effect of ADC on self-renewal in normal bone marrow (NBM), colony formation capacity was asseses during long term liquid culture after 24 hours exposure to 1–100 nM ADC. Furthermore internalisation of CLEC12A in AML progenitor and stem cells was tested. Several splice variants of CLEC12A are reported (CLL-1, MICLα, MICLβ, MICLγ) that have different intra-cellular signalling motifs or lack the transmembrane motif or the extra-cellular c-type lectin-like domain. Since these variants could not all be distinguished or detected by extra-cellular antibody binding, we evaluated these splice variants by Q-RT-PCR. After 24 hours exposure, a median IC50 value of >100 nM was observed for the unconjugated antibody CR2357. The median IC50 values for ADCs with non-cleavable linkers were 10 nM for CR2357-SMCC-DM1 (4,3 DM1/mAb), 2 nM for CR2357-PEG4-MAL-DM1 (5.9 DM1/mAb) and 0.8 nM for CR2357-PEG4-MAL-DM1 (10 DM1/mAb). For CR2357-SPDB-DM4 (4 DM4/mAb) which has a cleavable linker the median IC50 was 4 nM. The median IC50 of ADCs with non-cleavable linkers were significantly correlated to each other (r=0.730-0.784, p<0.01). CR2357-PEG4-MAL-DM1 (10 DM1/mAb) was significantly correlated to CLEC12A membrane expression (r=0.649, p<0.05). Prelimanary data of colony formation capacity during long term liquid culture of NBM showed that at >5 weeks after exposure, this was reduced to 15–50% for CR2357 and CR2357-PEG4-MAL-DM1 (10 DM1/mAb) relative to the untreated control. Exposure of AML cells to the CLL-1×CD3 BiTE antibody with donor T-cells (E:T=10:1 and 1:1) showed a dose dependent activation of T-cells as measured by increased CD25 and CD69 expression on CD4+ and CD8+ T-cells. Importantly, besides T-cell activation, Annexin V/7AAD staining of AML cells showed a specific decrease of CLEC12A-positive viable cells while in CLEC12A-negative cells viability remained constant. Internalisation of CR2357 antibody in CD34+/CD38+ progenitor cells and in CD34+/CD38- LSC was clearly demonstrated. Q-RT-PCR of CLEC12A splice variant expression showed highest expression for MICLα > MICLβ ∼F MICLγ > CLL-1 indicating that MICLα is the main variant expressed on the cellular membrane. Downstream signalling will therefore mainly be mediated by SHP-1/2 phosphatases. Although expression levels in AML, NBM, and sorted sub-populations varied, the ratio between the splice variants remained almost similar suggesting that the individual splice variants play a similar role in the different cell populations. In conclusion: these result show that targeting of CLEC12A-positive AML cells by ADCs and BiTE antibodies results in specific cell kill and might be a promising approach for the eradication of LSC that survive conventional therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 119-119
Author(s):  
Qing Li ◽  
Natacha Bohin ◽  
Tiffany Wen ◽  
Kevin M. Shannon ◽  
Sean J. Morrison

Abstract Abstract 119 Accumulating evidence suggests that most leukemias are initiated by rare leukemic stem cells (LSC) that are transformed from the normal hematopoietic stem cells and progenitors (HSC/P) by genetic lesions that lead to activation of oncogenes and inactivation of tumor suppressor genes. However, the signaling mechanisms by which these genes transform HSC/P into LSC are poorly understood. Activating mutations of NRAS and KRAS are highly prevalent in acute myeloid leukemia (AML), some myeloproliferative neoplasm (MPN) and myelodysplastic syndromes (MDS). In addition other leukemia associated genetic lesions, such as the BCR-ABL fusion, PTPN11 mutations, FLT3 internal tandem duplications, and NF1 inactivation all deregulate Ras signaling. We previously developed a mouse strain that conditionally expresses an oncogenic NrasG12D allele from the endogenous locus. This consistently resulted in an indolent MPD with delayed onset and prolonged survival in Mx1-cre, NrasG12D/+ mice (referred to as NrasG12D). Oncogenic NrasG12D, however, cooperated with the MOL4070LTR retrovirus to induce AMLs that share molecular and morphologic features with human M4/M5 AML. Here we report that NrasG12D directly affects HSC/P functions. While normal HSCs must remain quiescent to maintain the long term self-renewal capacity and mutations that drive HSC into cycle often lead to HSC depletion, NrasG12D increased HSC proliferation but at the same time increased the self-renewal and competitiveness of HSCs. Serial transplantations revealed that NrasG12D HSCs were able to give higher level of reconstitution than wild-type (WT) HSCs and gave rise to long term multi-lineage reconstitution in lethally irradiated mice after up to four rounds of transplantation while WT HSCs failed to reconstitute beyond two rounds. These effects were not associated with the development of leukemia suggesting oncogenic Nras dys-regulates HSC at a pre-leukemic stage and therefore plays an important role in leukemia initiation. Using histone-2B-GFP (H2B-GFP) label-retaining assays, we further detected a “bimodal” effect of NrasG12D on HSCs: NrasG12D induced a subpopulation of rapid “cycling” HSCs that lost GFP labeling and reconstitution activity faster than WT HSC but another HSC subpopulation that remained more “quiescent” than WT HSCs and retained higher reconstitution when transplanted to irradiated mice. The canonical Ras effector, ERK, was not activated in NrasG12D HSC/Ps and inhibition of ERK with a MEK inhibitor, PD325901, did not have any effect on the Nras induced increase of HSC proliferation. Stat5, on the other hand, was significantly activated in NrasG12D HSC/Ps and heterozygous knockout of Stat5ab abolished the increased proliferation in NrasG12D HSCs, suggesting that Stat5 signaling mediates at least part of the Nras induced increase in HSC proliferation. Nras is thus the first signaling pathway that simultaneously increases HSC proliferation, self-renewal and competitiveness without inducing frank leukemogenesis. This is likely through a “bimodal” effect of Nras signaling on HSC cell cycle regulation. Our studies also identified Stat5 as a novel therapeutic target to inhibit early events in Ras mediated leukemic transformation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5055-5055
Author(s):  
Zhenhua Yang ◽  
Hao Jiang

Abstract While stem cells undergo phenotypic and functional changes in development, the capacity of self-renewal and differentiation remains the defining property of stem cells throughout life, indicating certain fundamental regulatory mechanisms underlying these cardinal features of stem cells. A profound transition occurs to hematopoietic stem cells (HSCs) from embryonic to adult hematopoiesis, resulting in pronounced distinctions between fetal liver (FL) and adult bone marrow (BM) HSCs in many aspects. While many studies have documented a different dependence of fetal versus adult HSC function on epigenetic modulators including several Polycomb proteins, little is known about if Trithorax proteins play a similar or different role in fetal versus adult HSC function. More specifically, despite being a prominent epigenetic mark associated with gene activation, the role of H3K4 methylation (an activity of many Trithorax proteins) in different stages of HSCs remains unclear. As the major H3K4 methylases in mammals, the Set1/Mll family complexes play important roles in development and stem cell function, and are extensively associated with diseases including blood cancers. We have previously established a direct role of Dpy30, a core subunit in all Set1/Mll complexes, in facilitating genome-wide H3K4 methylation, and this allows an effective interrogation of the functional role of efficient H3K4 methylation through genetic studies of Dpy30. While dispensable for the self-renewal of embryonic stem cells (ESCs), Dpy30 is crucial for efficient differentiation of ESCs by facilitating the induction of many bivalently marked developmental genes (Jiang et al., Cell, 2011). We have then generated a Dpy30 conditional knockout mouse, and shown that Dpy30 plays a crucial role in the long term maintenance and differentiation of adult BM HSCs, and preferentially controls H3K4 methylation and expression of many hematopoiesis-associated genes in adult BM cells (Yang et al., J Exp Med, accepted). However, the role of Dpy30 and efficient H3K4 methylation in fetal HSCs is still unknown. To study the role of efficient H3K4 methylation in fetal HSCs, we deleted Dpy30 in fetal hematopoietic cells using VavCre line. VavCre; Dpy30F/- fetuses are anemic at E14.5 and E15.5, with reduced H3K4 methylation but significantly increased numbers of FL HSCs. However, these FL HSCs were functionally defective in colony formation and blood reconstitution following transplantation. Proliferation of the progenitors, but not HSCs, was significantly (but modestly) reduced. These results suggest a role of Dpy30 in differentiation of HSCs and progenitor proliferation in FL. We also competitively transplanted Mx1Cre; Dpy30F/- FL and deleted Dpy30 after stable engraftment. Our analysis at an early time point after deletion showed little effect on donor contribution to HSCs, but significant reduction of oligopotent progenitors. Analysis at a later time point after deletion, however, showed marked reduction of all hematopoietic cells including HSCs. These results support a cell-autonomous role of Dpy30 in the differentiation and long term maintenance of FL HSCs. The phenotypes of FL HSCs are largely similar to those of BM HSCs following Dpy30 loss, suggesting that Dpy30 and certain Dpy30 targets are fundamentally important in regulating HSCs regardless of the developmental stages. To identify these targets, we performed RNA-seq analyses for purified FL HSCs from VavCre; Dpy30F/- versus VavCre; Dpy30F/+ littermates. Among hundreds of genes that were significantly changed in FL HSCs, however, only a handful of genes were found to be co-downregulated in both FL and BM HSCs following Dpy30 loss, suggesting that Dpy30 may have different functional targets in different stages of HSCs. To identify Dpy30 targets fundamentally important to HSC regulation, we are now selectively investigating the function of a few common Dpy30 targets in HSCs by colony formation and potentially transplantation assays following their stable knockdown. The similar requirement of Dpy30 in both fetal and adult HSC differentiation as well as long-term maintenance underscores the fundamental importance of this epigenetic modulator in the central properties of stem cells, and studies of the common Dpy30 targets may identify new regulatory genes controlled by this modulator in fetal and adult HSC function. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document