scholarly journals Pasteurella multocida: Genotypes and Genomics

Author(s):  
Zhong Peng ◽  
Xiangru Wang ◽  
Rui Zhou ◽  
Huanchun Chen ◽  
Brenda A. Wilson ◽  
...  

SUMMARY Pasteurella multocida is a highly versatile pathogen capable of causing infections in a wide range of domestic and wild animals as well as in humans and nonhuman primates. Despite over 135 years of research, the molecular basis for the myriad manifestations of P. multocida pathogenesis and the determinants of P. multocida phylogeny remain poorly defined. The current availability of multiple P. multocida genome sequences now makes it possible to delve into the underlying genetic mechanisms of P. multocida fitness and virulence. Using whole-genome sequences, the genotypes, including the capsular genotypes, lipopolysaccharide (LPS) genotypes, and multilocus sequence types, as well as virulence factor-encoding genes of P. multocida isolates from different clinical presentations can be characterized rapidly and accurately. Putative genetic factors that contribute to virulence, fitness, host specificity, and disease predilection can also be identified through comparative genome analysis of different P. multocida isolates. However, although some knowledge about genotypes, fitness, and pathogenesis has been gained from the recent whole-genome sequencing and comparative analysis studies of P. multocida, there is still a long way to go before we fully understand the pathogenic mechanisms of this important zoonotic pathogen. The quality of several available genome sequences is low, as they are assemblies with relatively low coverage, and genomes of P. multocida isolates from some uncommon host species are still limited or lacking. Here, we review recent advances, as well as continuing knowledge gaps, in our understanding of determinants contributing to virulence, fitness, host specificity, disease predilection, and phylogeny of P. multocida.

2020 ◽  
Vol 9 (49) ◽  
Author(s):  
Morag Livingstone ◽  
Kevin Aitchison ◽  
Mark Dagleish ◽  
David Longbottom

ABSTRACT Pneumonic pasteurellosis, caused by Pasteurella multocida, is a common respiratory infection of ruminants that has major economic and welfare implications throughout the world. Here, we report the annotated genome sequences of seven pathogenic strains of P. multocida that were isolated from cattle in the United Kingdom.


2017 ◽  
Vol 5 (17) ◽  
Author(s):  
Pedro Henrique N. Panzenhagen ◽  
Claudius C. Cabral ◽  
Philip N. Suffys ◽  
Maria Helena C. Aquino ◽  
Robson M. Franco ◽  
...  

ABSTRACT Salmonella enterica subsp. enterica serovar Typhimurium is a surveyed worldwide serotype with well-characterized genomes for several different strains. In Brazil, very few studies have submitted whole-genome sequences to GenBank. This genome may be useful to analyze the genetic mechanisms comparable to those of other related studies conducted in Brazil and globally.


2018 ◽  
Vol 7 (6) ◽  
Author(s):  
Marcela Carina Audisio ◽  
Leonardo Albarracín ◽  
Maria Julia Torres ◽  
Lucila Saavedra ◽  
Elvira Maria Hebert ◽  
...  

This report describes the draft genome sequences of Lactobacillus salivarius A3iob and Lactobacillus johnsonii CRL1647, probiotic strains isolated from the gut of honeybee Apis mellifera workers. The reads were generated by a whole-genome sequencing (WGS) strategy on an Illumina MiSeq sequencer and were assembled into contigs with total sizes of 2,054,490 and 2,137,413 bp for the A3iob and CRL1647 strains, respectively.


2018 ◽  
Vol 6 (26) ◽  
Author(s):  
Zhong Liang ◽  
Melissa Stephens ◽  
Victoria A. Ploplis ◽  
Shaun W. Lee ◽  
Francis J. Castellino

Whole-genome shotgun sequences and bottom-up assembly of contigs of six skin isolates of Streptococcus pyogenes, viz., NS88.3 (emm98.1), NS223 (emm91), NS455 (emm52), SS1448 (emm86.2), SS1572 (emm223), and SS1574 (emm224), are presented here. All contigs were annotated, and the gene arrangements and the inferred proteins were consistent with a pattern D classification.


2018 ◽  
Vol 7 (13) ◽  
Author(s):  
Yanhong Liu ◽  
Aixia Xu ◽  
Pina M. Fratamico ◽  
Christopher H. Sommers ◽  
Luca Rotundo ◽  
...  

Listeria monocytogenes is an important foodborne pathogen that causes listeriosis. Here, we report the draft genome sequences of seven L. monocytogenes strains isolated from food, environmental, and clinical sources.


2018 ◽  
Vol 85 (4) ◽  
Author(s):  
Sara Kovanen ◽  
Mirko Rossi ◽  
Mari Pohja-Mykrä ◽  
Timo Nieminen ◽  
Mirja Raunio-Saarnisto ◽  
...  

ABSTRACTPoultry are considered a major reservoir and source of human campylobacteriosis, but the roles of environmental reservoirs, including wild birds, have not been assessed in depth. In this study, we isolated and characterizedCampylobacter jejunifrom western jackdaws (n= 91, 43%), mallard ducks (n= 82, 76%), and pheasants (n= 9, 9%). Most of the western jackdaw and mallard duckC. jejuniisolates represented multilocus sequence typing (MLST) sequence types (STs) that diverged from those previously isolated from human patients and various animal species, whereas all pheasant isolates represented ST-19, a common ST among human patients and other hosts worldwide. Whole-genome MLST revealed that mallard duck ST-2314 and pheasant ST-19 isolates represented bacterial clones that were genetically highly similar to human isolates detected previously. Further analyses revealed that in addition to a divergent ClonalFrame genealogy, certain genomic characteristics of the western jackdawC. jejuniisolates, e.g., a novelcdtABCgene cluster and the type VI secretion system (T6SS), may affect their host specificity and virulence. Game birds may thus pose a risk for acquiring campylobacteriosis; therefore, hygienic measures during slaughter and meat handling warrant special attention.IMPORTANCEThe roles of environmental reservoirs, including wild birds, in the molecular epidemiology ofCampylobacter jejunihave not been assessed in depth. Our results showed that game birds may pose a risk for acquiring campylobacteriosis, because they hadC. jejunigenomotypes highly similar to human isolates detected previously. Therefore, hygienic measures during slaughter and meat handling warrant special attention. On the contrary, a unique phylogeny was revealed for the western jackdaw isolates, and certain genomic characteristics identified among these isolates are hypothesized to affect their host specificity and virulence. Comparative genomics within sequence types (STs), using whole-genome multilocus sequence typing (wgMLST), and phylogenomics are efficient methods to analyze the genomic relationships ofC. jejuniisolates.


2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Yohsuke Ogawa ◽  
Kazumasa Shiraiwa ◽  
Yoshitoshi Ogura ◽  
Tadasuke Ooka ◽  
Sayaka Nishikawa ◽  
...  

ABSTRACTErysipelothrix rhusiopathiaecauses swine erysipelas, an important infectious disease in the swine industry. In Japan, the incidence of acute swine erysipelas due toE. rhusiopathiaeserovar 1a has recently increased markedly. To study the genetic relatedness of the strains from the recent cases, we analyzed 34E. rhusiopathiaeserovar 1a swine isolates collected between 1990 and 2011 and further investigated the possible association of the live Koganei 65-0.15 vaccine strain (serovar 1a) with the increase in cases. Pulsed-field gel electrophoresis analysis revealed no marked variation among the isolates; however, sequencing analysis of a hypervariable region in the surface-protective antigen A gene (spaA) revealed that the strains isolated after 2007 exhibited the samespaAgenotype and could be differentiated from older strains. Phylogenetic analysis based on genome-wide single-nucleotide polymorphisms (SNPs) revealed that the Japanese strains examined were closely related, showing a relatively small number of SNPs among them. The strains were classified into four major lineages, with Koganei 65-0.15 (lineage III) being phylogenetically separated from the other three lineages. The strains isolated after 2007 and the two older strains constituted one major lineage (lineage IV) with a specificspaAgenotype (M203/I257-SpaA), while the recent isolates were further divided into two geographic groups. The remaining older isolates belonged to either lineage I, with the I203/L257-SpaA type, or lineage II, with the I203/I257-SpaA type. These results indicate that the recent increased incidence of acute swine erysipelas in Japan is associated with two sublineages of lineage IV, which have independently evolved in two different geographic regions.IMPORTANCEUsing large-scale whole-genome sequence data fromErysipelothrix rhusiopathiaeisolates from a wide range of hosts and geographic origins, a recent study clarified the existence of three distinct clades (clades 1, 2, and 3) that are found across multiple continents and host species, representing both livestock and wildlife, and an “intermediate” clade between clade 2 and the dominant clade 3 within the species. In this study, we found that theE. rhusiopathiaeJapanese strains examined exhibited remarkably low levels of genetic diversity and confirmed that all of the Japanese and Chinese swine isolates examined in this study belong to clonal lineages within the intermediate clade. We report thatspaAgenotyping ofE. rhusiopathiaestrains is a practical alternative to whole-genome sequencing analysis of theE. rhusiopathiaeisolates from eastern Asian countries.


2018 ◽  
Vol 7 (14) ◽  
Author(s):  
Jule Anna Horlbog ◽  
Hyein Jang ◽  
Gopal Gopinath ◽  
Roger Stephan ◽  
Claudia Guldimann

Here, we report the whole-genome sequences of six Listeria monocytogenes strains isolated from meat and milk products in Switzerland. All of these strains carry premature stop codons or amino acid deletions in inlA.


2020 ◽  
Author(s):  
Zhong Peng ◽  
Junyang Liu ◽  
Wan Liang ◽  
Fei Wang ◽  
Li Wang ◽  
...  

Abstract Background: Different typing systems including capsular genotyping, lipopolysaccharide (LPS) genotyping, multilocus sequence typing (MLST), and virulence genotyping based on the detection of different virulence factor-encoding gene (VFG) profiles have been applied to characterize Pasteurella multocida strains from different host species. However, these methods require much time and effort in laboratories. Particularly, relying on one of these methods is difficult to address the biology of P. multocida from host species. Recently, we found that assigning P. multocida strains according to the combination of their capsular, LPS, and MLST genotypes (marked as capsular genotype: LPS genotype: MLST genotype) could help address the biological characteristics of P. multocida circulation in multiple hosts. However, it is still lack of a rapid, efficient, intelligent and cost-saving tool to diagnose P. multocida according to this system. Results: We have developed an intelligent genotyping and host tropism prediction tool PmGT for P. multocida strains according to their whole genome sequences by using machine learning and web 2.0 technologies. By using this tool, the capsular genotypes, LPS genotypes, and MLST genotypes as well as the main VFGs of P. multocida isolates in different host species were determined based on whole genome sequences. The results revealed a closer association between the genotypes and pasteurellosis rather than between genotypes and host species. Finally, we also used PmGT to predict the host species of P. multocida strains with the same capsular: lipopolysaccharide: MLST genotypes. Conclusions: With the advent of high-quality, inexpensive DNA sequencing, this platform represents a more efficient and cost-saving tool for P. multocida diagnosis in both epidemiological studies and clinical settings.


2019 ◽  
Vol 8 (11) ◽  
Author(s):  
Victoria López-Alonso ◽  
Sagrario Ortiz ◽  
Joaquín V. Martínez-Suárez

Here, we present the draft genome sequences of seven Listeria monocytogenes strains isolated during three independent studies carried out in three stages of a poultry meat production chain. The genome sequences of these strains obtained from different stages can help to understand the possible transmission of L. monocytogenes.


Sign in / Sign up

Export Citation Format

Share Document