scholarly journals Whole-Genome Sequences of SARS-CoV-2 Isolates from the Dominican Republic

2021 ◽  
Vol 10 (47) ◽  
Author(s):  
R. Paulino-Ramirez ◽  
E. Riego ◽  
A. Vallejo-Degaudenzi ◽  
V. V. Calderon ◽  
L. Tapia ◽  
...  

Here, we report the genome sequences of five severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains that were obtained from symptomatic individuals with travel histories during community surveillance in the Dominican Republic in 2020. These sequences provide a starting point for further genomic studies of gene flow and molecular diversity in the Caribbean nation. Phylogenetic analysis suggests that all genomes correspond to the B.1 variant.

2020 ◽  
Author(s):  
Myat Htut Nyunt ◽  
Hnin Ohnmar Soe ◽  
Kay Thi Aye ◽  
Wah Wah Aung ◽  
Yi Yi Kyaw ◽  
...  

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a major health concern globally. Genomic epidemiology is an important tool to assess the pandemic of the coronavirus disease 2019 (COVID-19). Several mutations have been reported by genome analysis of the SARS-CoV-2. In the present study, we investigate mutational and phylogenetic analysis of 30 whole genome sequences for genomic characteristics of the virus in the specimens collected early phase of pandemic, (March-June, 2020) and sudden surge of infection (August-September, 2020). Phylogenetic analysis revealed that 4 samples of L strain and 1 GR strain in early stage of local transmission, while 6 returnees by rescue flights showed GH (India) and GR strains (China and Philippines) with no evidence of local spread. However, all 19 whole genome sequences in sudden surge of local transmission showed genetically distinct clade GH (Lineage B.1.36). Surge of second wave on SARS-CoV-2 infection was linked to the single-introduction of the GH strain that may be a result of strict restriction of international travel and containment efforts. These genomic data provides the useful information to disease control and prevention strategy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Myat Htut Nyunt ◽  
Hnin Ohnmar Soe ◽  
Kay Thi Aye ◽  
Wah Wah Aung ◽  
Yi Yi Kyaw ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a major health concern globally. Genomic epidemiology is an important tool to assess the pandemic of coronavirus disease 2019 (COVID-19). Several mutations have been reported by genome analysis of the SARS-CoV-2. In the present study, we investigated the mutational and phylogenetic analysis of 30 whole-genome sequences for the virus's genomic characteristics in the specimens collected in the early phase of the pandemic (March–June, 2020) and the sudden surge of local transmission (August–September, 2020). The four samples in the early phase of infection were B.6 lineage and located within a clade of the samples collected at the same time in Singapore and Malaysia, while five returnees by rescue flights showed the lineage B. 1.36.1 (three from India), B.1.1 (one from India) and B.1.80 (one from China). However, there was no evidence of local spread from these returnees. Further, all 19 whole-genome sequences collected in the sudden surge of local transmission showed lineage B.1.36. The surge of the second wave on SARS-CoV-2 infection was linked to the single-introduction of a variant (B.1.36) that may result from the strict restriction of international travel and containment efforts. These genomic data provides the useful information to disease control and prevention strategy.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1803
Author(s):  
Jitendra Singh ◽  
Anvita Gupta Malhotra ◽  
Debasis Biswas ◽  
Prem Shankar ◽  
Leena Lokhande ◽  
...  

India experienced a tragic second wave after the end of March 2021, which was far more massive than the first wave and was driven by the emergence of the novel delta variant (B.1.617.2) of the SARS-CoV-2 virus. In this study, we explored the local and national landscape of the viral variants in the period immediately preceding the second wave to gain insight into the mechanism of emergence of the delta variant and thus improve our understanding of the causation of the second wave. We randomly selected 20 SARS-CoV-2 positive samples diagnosed in our lab between 3 February and 8 March 2021 and subjected them to whole genome sequencing. Nine of the 20 sequenced genomes were classified as kappa variant (B.1.617.1). The phylogenetic analysis of pan-India SARS-CoV-2 genome sequences also suggested the gradual replacement of the α variant with the kappa variant during this period. This relative consolidation of the kappa variant was significant, since it shared 3 of the 4 signature mutations (L452R, E484Q and P681R) observed in the spike protein of delta variant and thus was likely to be the precursor in its evolution. This study demonstrates the predominance of the kappa variant in the period immediately prior to the second wave and underscores its role as the “bridging variant” between the α and delta variants that drove the first and second waves of COVID-19 in India, respectively.


2019 ◽  
Author(s):  
Ke Wang ◽  
Iain Mathieson ◽  
Jared O’Connell ◽  
Stephan Schiffels

AbstractThe genetic diversity of humans, like many species, has been shaped by a complex pattern of population separations followed by isolation and subsequent admixture. This pattern, reaching at least as far back as the appearance of our species in the paleontological record, has left its traces in our genomes. Reconstructing a population’s history from these traces is a challenging problem. Here we present a novel approach based on the Multiple Sequentially Markovian Coalescent (MSMC) to analyse the population separation history. Our approach, called MSMC-IM, uses an improved implementation of the MSMC (MSMC2) to estimate coalescence rates within and across pairs of populations, and then fits a continuous Isolation-Migration model to these rates to obtain a time-dependent estimate of gene flow. We show, using simulations, that our method can identify complex demographic scenarios involving post-split admixture or archaic introgression. We apply MSMC-IM to whole genome sequences from 15 worldwide populations, tracking the process of human genetic diversification. We detect traces of extremely deep ancestry between some African populations, with around 1% of ancestry dating to divergences older than a million years ago.Author SummaryHuman demographic history is reflected in specific patterns of shared mutations between the genomes from different populations. Here we aim to unravel this pattern to infer population structure through time with a new approach, called MSMC-IM. Based on estimates of coalescence rates within and across populations, MSMC-IM fits a time-dependent migration model to the pairwise rate of coalescences. We implemented this approach as an extension to existing software (MSMC2), and tested it with simulations exhibiting different histories of admixture and gene flow. We then applied it to the genomes from 15 worldwide populations to reveal their pairwise separation history ranging from a few thousand up to several million years ago. Among other results, we find evidence for remarkably deep population structure in some African population pairs, suggesting that deep ancestry dating to one million years ago and older is still present in human populations in small amounts today.


2021 ◽  
Vol 10 (38) ◽  
Author(s):  
Dawit Hailu Alemayehu ◽  
Bethlehem Adnew ◽  
Fekadu Alemu ◽  
Dessalegn Abeje Tefera ◽  
Tamrayehu Seyoum ◽  
...  

Three complete severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from Ethiopian patients were compared with deposited global genomes. Two genomes belonged to genetic group 20A/B.1/GH, and the other belonged to genetic group 20A/B.1.480/GH. Enhancing genomic capacity is important to investigate the transmission and to monitor the evolution and mutational patterns of SARS-CoV-2 in this country.


Author(s):  
Hu Xu ◽  
Chao Li ◽  
Wansheng Li ◽  
Jing Zhao ◽  
Bangjun Gong ◽  
...  

NADC34-like PRRSV strains were first detected in China in 2017, with epidemic potential. In this study, the phylogenetic, epidemic, and recombinant properties of NADC34-like PRRSV in China were evaluated comprehensively. From 2020 to October 2021, 82 NADC34-like PRRSV isolates were obtained from 433 PRRSV-positive clinical samples. These strains accounted for 11.5% and 28.6% of positives in 2020 and 2021, respectively, and have spread to eight provinces. We selected 15 samples for whole-genome sequencing, revealing genome lengths of 15,009 to 15,113 nt. Phylogenetic analysis revealed that Chinese NADC34-like strains cluster with American sublineage 1.5 strains and do not form an independent branch. Recombination analysis revealed that six of fifteen complete genome sequences derived from recombination between NADC34-like and NADC30-like or HP-PRRSV; they all recombined with local strains in China, exhibiting a complex recombination pattern. Partial Nsp2 sequence alignment showed that nine of fifteen isolates have a continuous 100-aa deletion (similar to IA/2014/NADC34); other isolates have a 131-aa discontinuity deletion (similar to NADC30). Five of them also have additional amino acid deletions, all of which are reported for the first time here. In the last two years, NADC34-like PRRSV has become one of the main epidemic strains in some areas of China; it has changed significantly, its homology has decreased significantly, and it has undergone complex recombination with local Chinese strains. These results are of great significance for understanding the current epidemic situation of PRRSV in China.


2020 ◽  
Author(s):  
Bourema Kouriba ◽  
Angela Duerr ◽  
Alexandra Rehn ◽  
Abdoul Karim Sangare ◽  
Brehima Youssouf Traoure ◽  
...  

We are currently facing a pandemic of COVID-19, caused by a spillover from an animal-originating coronavirus to humans occuring in the Wuhan region, China, in December 2019. From China the virus has spread to 188 countries and regions worldwide, reaching the Sahel region on the 2nd of March 2020. Since whole genome sequencing (WGS) data is very crucial to understand the spreading dynamics of the ongoing pandemic, but only limited sequence data is available from the Sahel region to date, we have focused our efforts on generating the first Malian sequencing data available. Screening of 217 Malian patient samples for the presence of SARS-CoV-2 resulted in 38 positive isolates from which 21 whole genome sequences were generated. Our analysis shows that both, the early A (19B) and the fast evolving B (20A/C) clade, are present in Mali indicating multiple and independent introductions of the SARS-CoV-2 to the Sahel region.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1251
Author(s):  
Bourema Kouriba ◽  
Angela Dürr ◽  
Alexandra Rehn ◽  
Abdoul Karim Sangaré ◽  
Brehima Y. Traoré ◽  
...  

We are currently facing a pandemic of COVID-19, caused by a spillover from an animal-originating coronavirus to humans occurring in the Wuhan region of China in December 2019. From China, the virus has spread to 188 countries and regions worldwide, reaching the Sahel region on 2 March 2020. Since whole genome sequencing (WGS) data is very crucial to understand the spreading dynamics of the ongoing pandemic, but only limited sequencing data is available from the Sahel region to date, we have focused our efforts on generating the first Malian sequencing data available. Screening 217 Malian patient samples for the presence of SARS-CoV-2 resulted in 38 positive isolates, from which 21 whole genome sequences were generated. Our analysis shows that both the early A (19B) and the later observed B (20A/C) clade are present in Mali, indicating multiple and independent introductions of SARS-CoV-2 to the Sahel region.


Sign in / Sign up

Export Citation Format

Share Document