scholarly journals Sustained Replication of Synthetic Canine Distemper Virus Defective Genomes In Vitro and In Vivo

mSphere ◽  
2021 ◽  
Author(s):  
Natasha L. Tilston-Lunel ◽  
Stephen R. Welch ◽  
Sham Nambulli ◽  
Rory D. de Vries ◽  
Gregory W. Ho ◽  
...  

Defective interfering (DI) genomes have long been considered inconvenient artifacts that suppressed viral replication in vitro . However, advances in sequencing technologies have led to DI genomes being identified in clinical samples, implicating them in disease progression and outcome.

2008 ◽  
Vol 82 (21) ◽  
pp. 10510-10518 ◽  
Author(s):  
Danielle E. Anderson ◽  
Veronika von Messling

ABSTRACT Morbilliviruses, including measles and canine distemper virus (CDV), are nonsegmented, negative-stranded RNA viruses that cause severe diseases in humans and animals. The transcriptional units in their genomes are separated by untranslated regions (UTRs), which contain essential transcription and translation signals. Due to its increased length, the region between the matrix (M) protein and fusion (F) protein open reading frames is of particular interest. In measles virus, the entire F 5′ region is untranslated, while several start codons are found in most other morbilliviruses, resulting in a long F protein signal peptide (Fsp). To characterize the role of this region in morbillivirus pathogenesis, we constructed recombinant CDVs, in which either the M-F UTR was replaced with that between the nucleocapsid (N) and phosphoprotein (P) genes, or 106 Fsp residues were deleted. The Fsp deletion alone had no effect in vitro and in vivo. In contrast, substitution of the UTR was associated with a slight increase in F gene and protein expression. Animals infected with this virus either recovered completely or experienced prolonged disease and death due to neuroinvasion. The combination of both changes resulted in a virus with strongly increased F gene and protein expression and complete attenuation. Taken together, our results provide evidence that the region between the morbillivirus M and F genes modulates virulence through transcriptional control of the F gene expression.


2020 ◽  
Author(s):  
Guodong Cao ◽  
Pengping Li ◽  
Qiang Sun ◽  
Sihan Chen ◽  
Xin Xu ◽  
...  

Abstract Background: Gastric cancer presents high risk of metastasis and chemotherapy resistance. Hence, the mechanistic understanding of the tumor metastasis and chemotherapy resistance is quietly important.Methods: TCGA database and clinical samples are used for exploring the role of FHL3 in disease progression and prognosis. The roles of FHL3 in metastasis and chemotherapy resistance are explored in vitro and in vivo by siRNA or shRNA treatment. Finally, we explore the FHL3-mediated EMT and chemotherapy resistance.Results: mRNA and protein level of FHL3 is significantly up-regulated in gastric cancer tissues when compares with it in adjacent tissue. Higher expression level of FHL3 companies with worse overall survival in gastric cancer. OPH resistance cells show higher level of FHL3 and mesenchymal phenotype. Knockdown of FHL3 slightly inhibits the cell growth, while it obviously sensitizes the chemotherapy in vivo and in vitro. In addition, down-regulation of FHL3 decreases the mesenchymal markers, such as Slug, Snail, Twist1, and vimentin, while increases the epithelial marker E-cadherin. For mechanism study, FHL3 knockdown down-regulates the expression level or activity of MAPK/ERK pathway and TGFβ/PI3K/Akt/GSK3β-RNF146/ubiquitin pathway in OPH resistance cells. Mesenchymal phenotype cells hold higher level of MDR1, and the FHL3 knockdown reverts the MDR1 in this type cell. Conclusion: FHL3 is a risk of disease progression in gastric cancer. MAPK and PI3K pathways were activated when FHL3 induces EMT and drug resistance process, but the TGFβ/Smad -dependent pathway did not participate in the process. FHL3 competitively bond the ubiquitin complex (slug/GSK3β/RNF146) with slug, inhibit ubiquitination of Slug.


2021 ◽  
Author(s):  
Natasha Tilston-Lunel ◽  
Stephen R. Welch ◽  
Sham Nambulli ◽  
Rory D. de Vries ◽  
Gregory Ho ◽  
...  

Defective interfering (DI) genomes restrict viral replication and induce type-I interferon. Since DI genomes have been proposed as vaccine adjuvants or therapeutic antiviral agents, it is important to understand their generation, delineate their mechanism of action, develop robust production capacities, assess their safety and in vivo longevity and determine their long-term effects. To address this, we generated a recombinant (r) canine distemper virus (CDV) from an entirely synthetic molecular clone designed using the genomic sequence from a clinical isolate obtained from a free-ranging raccoon with distemper. rCDV was serially passaged in vitro to identify DI genomes that naturally arise during rCDV replication. Defective genomes were identified by Sanger and next-generation sequencing techniques and predominant genomes were synthetically generated and cloned into T7-driven plasmids. Fully encapsidated DI particles (DIPs) were then generated using a rationally attenuated rCDV as a producer virus to drive DI genome replication. We demonstrate these DIPs interfere with rCDV replication in a dose-dependent manner in vitro. Finally, we show sustained replication of a fluorescent DIP in experimentally infected ferrets over a period of 14 days. Most importantly, DIPs were isolated from the lymphoid tissues which are a major site of CDV replication. Our established pipeline for detection, generation and assaying DIPs is transferable to highly pathogenic paramyxoviruses and will allow qualitative and quantitative assessment of the therapeutic effects of DIP administration on disease outcome.


Author(s):  
Jun-Xian Du ◽  
Yi-Hong Luo ◽  
Si-Jia Zhang ◽  
Biao Wang ◽  
Cong Chen ◽  
...  

Abstract Background Intensive evidence has highlighted the effect of aberrant alternative splicing (AS) events on cancer progression when triggered by dysregulation of the SR protein family. Nonetheless, the underlying mechanism in breast cancer (BRCA) remains elusive. Here we sought to explore the molecular function of SRSF1 and identify the key AS events regulated by SRSF1 in BRCA. Methods We conducted a comprehensive analysis of the expression and clinical correlation of SRSF1 in BRCA based on the TCGA dataset, Metabric database and clinical tissue samples. Functional analysis of SRSF1 in BRCA was conducted in vitro and in vivo. SRSF1-mediated AS events and their binding motifs were identified by RNA-seq, RNA immunoprecipitation-PCR (RIP-PCR) and in vivo crosslinking followed by immunoprecipitation (CLIP), which was further validated by the minigene reporter assay. PTPMT1 exon 3 (E3) AS was identified to partially mediate the oncogenic role of SRSF1 by the P-AKT/C-MYC axis. Finally, the expression and clinical significance of these AS events were validated in clinical samples and using the TCGA database. Results SRSF1 expression was consistently upregulated in BRCA samples, positively associated with tumor grade and the Ki-67 index, and correlated with poor prognosis in a hormone receptor-positive (HR+) cohort, which facilitated proliferation, cell migration and inhibited apoptosis in vitro and in vivo. We identified SRSF1-mediated AS events and discovered the SRSF1 binding motif in the regulation of splice switching of PTPMT1. Furthermore, PTPMT1 splice switching was regulated by SRSF1 by binding directly to its motif in E3 which partially mediated the oncogenic role of SRSF1 by the AKT/C-MYC axis. Additionally, PTPMT1 splice switching was validated in tissue samples of BRCA patients and using the TCGA database. The high-risk group, identified by AS of PTPMT1 and expression of SRSF1, possessed poorer prognosis in the stage I/II TCGA BRCA cohort. Conclusions SRSF1 exerts oncogenic roles in BRCA partially by regulating the AS of PTPMT1, which could be a therapeutic target candidate in BRCA and a prognostic factor in HR+ BRCA patient.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3959
Author(s):  
Oluwaseun Adebayo Bamodu ◽  
Yuan-Hung Wang ◽  
Chen-Hsun Ho ◽  
Su-Wei Hu ◽  
Chia-Da Lin ◽  
...  

Background: prostate cancer (PCa) is a principal cause of cancer-related morbidity and mortality. Castration resistance and metastasis are clinical challenges and continue to impede therapeutic success, despite diagnostic and therapeutic advances. There are reports of the oncogenic activity of genetic suppressor element (GSE)1 in breast and gastric cancers; however, its role in therapy resistance, metastasis, and susceptibility to disease recurrence in PCa patients remains unclear. Objective: this study investigated the role of aberrantly expressed GSE1 in the metastasis, therapy resistance, relapse, and poor prognosis of advanced PCa. Methods: we used a large cohort of multi-omics data and in vitro, ex vivo, and in vivo assays to investigate the potential effect of altered GSE1 expression on advanced/castration-resistant PCa (CRPC) treatment responses, disease progression, and prognosis. Results: using a multi-cohort approach, we showed that GSE1 is upregulated in PCa, while tumor-associated calcium signal transducer 2 (TACSTD2) is downregulated. Moreover, the direct, but inverse, correlation interaction between GSE1 and TACSTD2 drives metastatic disease, castration resistance, and disease progression and modulates the clinical and immune statuses of patients with PCa. Patients with GSE1highTACSTD2low expression are more prone to recurrence and disease-specific death than their GSE1lowTACSTD2high counterparts. Interestingly, we found that the GSE1–TACSTD2 expression profile is associated with the therapy responses and clinical outcomes in patients with PCa, especially those with metastatic/recurrent disease. Furthermore, we demonstrate that the shRNA-mediated targeting of GSE1 (shGSE1) significantly inhibits cell proliferation and attenuates cell migration and tumorsphere formation in metastatic PC3 and DU145 cell lines, with an associated suppression of VIM, SNAI2, and BCL2 and the concomitant upregulation of TACSTD2 and BAX. Moreover, shGSE1 enhances sensitivity to the antiandrogens abiraterone and enzalutamide in vitro and in vivo. Conclusion: these data provide preclinical evidence of the oncogenic role of dysregulated GSE1–TACSTD2 signaling and show that the molecular or pharmacological targeting of GSE1 is a workable therapeutic strategy for inhibiting androgen-driven oncogenic signals, re-sensitizing CRPC to treatment, and repressing the metastatic/recurrent phenotypes of patients with PCa.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A401-A401
Author(s):  
Shubham Pant ◽  
Amishi Shah ◽  
Pavlos Msaouel ◽  
Matthew Campbell ◽  
Shi-Ming Tu ◽  
...  

BackgroundMRx0518 is a novel, human gut microbiome-derived, single-strain, oral live biotherapeutic. It is a bacterium of the Enterococcus genus that was selected for development in the treatment of solid tumours for its strong in vitro and in vivo immunostimulatory activity. In vivo studies have shown that MRx0518 can inhibit tumour growth in different syngeneic cancer models as monotherapy and in combination with checkpoint inhibitors. MRx0518 has been shown to reduce Treg and increase Th1 and Tc1 lymphocyte differentiation in vitro, and increase intratumoral CD4+ and CD8+ T cells and NK cells in vivo.This phase I/II clinical study is evaluating the combination of MRx0518 and pembrolizumab in a cohort of heavily pre-treated patients refractory to immune checkpoint inhibitors (ICIs) to assess whether it is safe and can provide a clinical benefit.MethodsThe study is being conducted in two parts. Part A is complete and evaluated safety of the combination therapy in a cohort of 12 mRCC and mNSCLC patients. This data was assessed by the Safety Review Committee and it was determined appropriate to proceed to Part B. Part B is now recruiting up to 30 additional patients per indication (RCC, NSCLC or bladder cancer) at several US sites. Patients in both parts must be refractory to checkpoint inhibition. This is defined as having had an initial benefit from PD-1 pathway targeting immune checkpoint inhibition (ICI) but developing disease progression confirmed by two radiological scans ≥4 weeks apart in the absence of rapid clinical progression and within 12 weeks of last dose of ICI. Patients are treated with 1 capsule of MRx0518 (1 × 1010 to 1 × 1011 CFU) twice daily and pembrolizumab (200 mg every 3 weeks) for up to 35 cycles or until disease progression. Tumour response is assessed every 9 weeks per RECIST. Blood, stool and urine samples are collected throughout the study to evaluate immune markers and microbiome. Patients may choose to consent to tissue biopsies. The primary objective of the study is to evaluate safety of the combination by monitoring toxicities in the first cycle of treatment. Secondary objectives are to evaluate efficacy via ORR, DOR, DCR (CR, PR or SD ≥6 months) and PFS. Exploratory objectives are to evaluate biomarkers of treatment effect, impact on microbiota and OS and correlation of clinical outcome with PD-L1 CPS/TPS.ResultsN/AConclusionsN/ATrial RegistrationNCT03637803Ethics ApprovalThis study was approved by University of Texas MD Anderson’s Institutional Review Board; approval ref. 2018-0290


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Leilei Lin ◽  
Yu Wang ◽  
Sicheng Bian ◽  
Lili Sun ◽  
Zhibo Guo ◽  
...  

Abstract Background As a common haematological malignancy, acute myeloid leukaemia (AML), particularly with extramedullary infiltration (EMI), often results in a high mortality rate and poor prognosis. Circular RNAs (circRNAs) regulate biological and pathogenic processes, suggesting a potential role in AML. We have previously described the overall alterations in circRNAs and their regulatory networks between patients with AML presenting with and without EMI. This study aims to find new prognostic and therapeutic targets potentially associated with AML. Methods qRT-PCR was performed on samples from 40 patients with AML and 15 healthy controls. The possibility of using circPLXNB2 (circRNA derived from PLXNB2) as a diagnostic and prognostic biomarker for AML was analysed with multiple statistical methods. In vitro, the function of circPLXNB2 was studied by lentivirus transfection, CCK-8 assays, flow cytometry, and Transwell experiments. Western blotting and qRT-PCR were performed to detect the expression of related proteins and genes. The distribution of circPLXNB2 in cells was observed using RNA fluorescence in situ hybridization (RNA-FISH). We also investigated the role of circPLXNB2 by establishing AML xenograft models in NOD/SCID mice. Results By analysing the results of qRT-PCR detection of clinical samples, the expression of the circPLXNB2 and PLXNB2 mRNAs were significantly increased in patients with AML, more specifically in patients with AML presenting with EMI. High circPLXNB2 expression was associated with an obviously shorter overall survival and leukaemia-free survival of patients with AML. The circPLXNB2 expression was positively correlated with PLXNB2 mRNA expression, as evidenced by Pearson’s correlation analysis. RNA-FISH revealed that circPLXNB2 is mainly located in the nucleus. In vitro and in vivo, circPLXNB2 promoted cell proliferation and migration and inhibited apoptosis. Notably, circPLXNB2 also increased the expression of PLXNB2, BCL2 and cyclin D1, and reduced the expression of BAX. Conclusion In summary, we validated the high expression of circPLXNB2 and PLXNB2 in patients with AML. Elevated circPLXNB2 levels were associated with poor clinical outcomes in patients with AML. Importantly, circPLXNB2 accelerated tumour growth and progression, possibly by regulating PLXNB2 expression. Our study highlights the potential of circPLXNB2 as a new prognostic predictor and therapeutic target for AML in the future.


Sign in / Sign up

Export Citation Format

Share Document