scholarly journals Dispensable Role of Mitochondrial Fission Protein 1 (Fis1) in the Erythrocytic Development of Plasmodium falciparum

mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Mulaka Maruthi ◽  
Liqin Ling ◽  
Jing Zhou ◽  
Hangjun Ke

ABSTRACT Malaria remains a huge global health burden, and control of this disease has run into a severe bottleneck. To defeat malaria and reach the goal of eradication, a deep understanding of the parasite biology is urgently needed. The mitochondrion of the malaria parasite is essential throughout the parasite’s life cycle and has been validated as a clinical drug target. In the asexual development of Plasmodium spp., the single mitochondrion grows from a small tubular structure to a complex branched network. This branched mitochondrion is divided at the end of schizogony when 8 to 32 daughter cells are produced, distributing one mitochondrion to each forming merozoite. In mosquito and liver stages, the giant mitochondrial network is split into thousands of pieces and daughter mitochondria are segregated into individual progeny. Despite the significance of mitochondrial fission in Plasmodium, the underlying mechanism is largely unknown. Studies of mitochondrial fission in model eukaryotes have revealed that several mitochondrial fission adaptor proteins are involved in recruiting dynamin GTPases to physically split mitochondrial membranes. Apicomplexan parasites, however, share no identifiable homologs of mitochondrial fission adaptor proteins with yeast or humans, except for Fis1. Here, we investigated the localization and essentiality of the Fis1 homolog in Plasmodium falciparum, PfFis1 (PF3D7_1325600), during the asexual life cycle. We found that PfFis1 requires an intact C terminus for mitochondrial localization but is not essential for parasite development or mitochondrial fission. The dispensable role of PfFis1 indicates that Plasmodium contains additional fission adaptor proteins on the mitochondrial outer membrane that could be essential for mitochondrial fission. IMPORTANCE Malaria is responsible for over 230 million clinical cases and ∼half a million deaths each year. The single mitochondrion of the malaria parasite functions as a metabolic hub throughout the parasite’s developmental cycle (DC) and also as a source of ATP in certain stages. To pass on its essential functions, the parasite’s mitochondrion needs to be properly divided and segregated into all progeny during cell division via a process termed mitochondrial fission. Due to the divergent nature of Plasmodium spp., the molecular players involved in mitochondrial fission and their mechanisms of action remain largely unknown. Here, we found that the only identifiable mitochondrial fission adaptor protein that is evolutionarily conserved in the Apicomplexan phylum, Fis1, it not essential in P. falciparum asexual stages. Our data suggest that malaria parasites use redundant fission adaptor proteins on the mitochondrial outer membrane to mediate the fission process.

2020 ◽  
Author(s):  
Mulaka Maruthi ◽  
Liqin Ling ◽  
Jing zhou ◽  
Hangjun Ke

AbstractMalaria remains a huge global health burden and control of this disease has run into a severe bottleneck. To defeat malaria and reach the goal of eradication, a deep understanding of parasite biology is urgently needed. The mitochondrion of the malaria parasite is essential throughout the parasite’s lifecycle and has been validated as a clinical drug target. In the asexual development of Plasmodium spp., the single mitochondrion grows from a small tubular structure to a complex branched network. At the end of schizogony when 8-32 merozoites are produced, the branched mitochondrion is precisely divided, distributing one mitochondrion to each forming daughter merozoite. In mosquito and liver stages, the giant mitochondrial network is split into thousands of pieces then daughter mitochondria are segregated into individual progeny. Despite the significance of mitochondrial fission in Plasmodium, the underlying mechanism is largely unknown. Studies of mitochondrial fission in model eukaryotes have revealed that several mitochondrial fission adaptor proteins are involved in recruiting dynamin GTPases to physically split mitochondrial membranes. Apicomplexan parasites, however, share no identifiable homologs of mitochondrial fission adaptor proteins of yeast or human, except for Fis1. Here, we investigated the localization and essentiality of the Fis1 homolog in Plasmodium falciparum, PfFis1 (PF3D7_1325600), during the asexual lifecycle. We found that PfFis1 requires an intact C-terminus for mitochondrial localization but is not essential for parasite development or mitochondrial fission. The dispensable role of PfFis1 indicates Plasmodium contains additional fission adaptor proteins on the mitochondrial outer membrane that could be essential for mitochondrial fission.ImportanceMalaria is responsible for over 230 million clinical cases and ∼ half a million deaths each year. The single mitochondrion of the malaria parasite functions as a metabolic hub throughout the parasite’s developmental cycle as well as a source of ATP in certain stages. To pass on its essential functions, the parasite’s mitochondrion needs to be properly divided and segregated into all progeny during cell division via a process named mitochondrial fission. Due to the divergent nature of Plasmodium spp., molecular players involved in mitochondrial fission and their mechanisms of action remain largely unknown. We found that Fis1, the only identifiable mitochondrial fission adaptor protein evolutionarily conserved in the phylum of Apicomplexa, however, is not essential for Plasmodium falciparum. Our data suggest that malaria parasites use redundant fission adaptor proteins on the mitochondrial outer membrane to mediate the fission process.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kylie Jacobs ◽  
Robert Charvat ◽  
Gustavo Arrizabalaga

ABSTRACT Toxoplasma gondii’s single mitochondrion is very dynamic and undergoes morphological changes throughout the parasite’s life cycle. During parasite division, the mitochondrion elongates, enters the daughter cells just prior to cytokinesis, and undergoes fission. Extensive morphological changes also occur as the parasite transitions from the intracellular environment to the extracellular environment. We show that treatment with the ionophore monensin causes reversible constriction of the mitochondrial outer membrane and that this effect depends on the function of the fission-related protein Fis1. We also observed that mislocalization of the endogenous Fis1 causes a dominant-negative effect that affects the morphology of the mitochondrion. As this suggests that Fis1 interacts with proteins critical for maintenance of mitochondrial structure, we performed various protein interaction trap screens. In this manner, we identified a novel outer mitochondrial membrane protein, LMF1, which is essential for positioning of the mitochondrion in intracellular parasites. Normally, while inside a host cell, the parasite mitochondrion is maintained in a lasso shape that stretches around the parasite periphery where it has regions of coupling with the parasite pellicle, suggesting the presence of membrane contact sites. In intracellular parasites lacking LMF1, the mitochondrion is retracted away from the pellicle and instead is collapsed, as normally seen only in extracellular parasites. We show that this phenotype is associated with defects in parasite fitness and mitochondrial segregation. Thus, LMF1 is necessary for mitochondrial association with the parasite pellicle during intracellular growth, and proper mitochondrial morphology is a prerequisite for mitochondrial division. IMPORTANCE Toxoplasma gondii is an opportunistic pathogen that can cause devastating tissue damage in the immunocompromised and congenitally infected. Current therapies are not effective against all life stages of the parasite, and many cause toxic effects. The single mitochondrion of this parasite is a validated drug target, and it changes its shape throughout its life cycle. When the parasite is inside a cell, the mitochondrion adopts a lasso shape that lies in close proximity to the pellicle. The functional significance of this morphology is not understood and the proteins involved are currently not known. We have identified a protein that is required for proper mitochondrial positioning at the periphery and that likely plays a role in tethering this organelle. Loss of this protein results in dramatic changes to the mitochondrial morphology and significant parasite division and propagation defects. Our results give important insight into the molecular mechanisms regulating mitochondrial morphology.


mBio ◽  
2021 ◽  
Author(s):  
Emily S. Mathews ◽  
Andrew J. Jezewski ◽  
Audrey R. Odom John

During its complex life cycle, the malaria parasite survives dramatic environmental stresses, including large temperature shifts. Protein prenylation is required during asexual replication of Plasmodium falciparum , and the canonical heat shock protein 40 protein (HSP40; PF3D7_1437900) is posttranslationally modified with a 15-carbon farnesyl isoprenyl group.


2018 ◽  
Author(s):  
Mateus Milani ◽  
Gerald M Cohen ◽  
Shankar Varadarajan

AbstractThe mitochondrial fission machinery, comprising a dynamin-related GTPase, DRP-1, is crucial for the regulation of mitochondrial membrane dynamics. Recent reports suggest that the tubular architecture of the endoplasmic reticulum (ER) marks the constriction sites on the mitochondria to facilitate DRP-1-mediated mitochondrial fission. However, the role of several ER shaping proteins that maintain the elaborate network of tubes and sheets in mitochondrial constriction and fission is not yet known. In this report, we demonstrate that modulation of the expression levels of key ER shaping proteins, namely Reticulon1 (RTN-1), Reticulon 4 (RTN-4), Lunapark-1 (LNP-1) and CLIMP-63, markedly decreased the extent of mitochondrial fission mediated by BH3 mimetics, despite no detectable changes in DRP-1 recruitment to the mitochondria. Furthermore, modulation of ER shaping proteins significantly decreased other hallmarks of apoptosis, such as mitochondrial outer membrane permeabilization, caspase activation and phosphatidylserine externalization, and functioned independently of mitochondrial cristae remodeling, thus demonstrating a requirement of ER shaping proteins and ER structural integrity for the efficient execution of the instrinsic apoptotic pathway.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 100
Author(s):  
Eric Rossi ◽  
Megan E. Meuser ◽  
Camille J. Cunanan ◽  
Simon Cocklin

The capsid (CA) protein of the human immunodeficiency virus type 1 (HIV-1) is an essential structural component of a virion and facilitates many crucial life cycle steps through interactions with host cell factors. Capsid shields the reverse transcription complex from restriction factors while it enables trafficking to the nucleus by hijacking various adaptor proteins, such as FEZ1 and BICD2. In addition, the capsid facilitates the import and localization of the viral complex in the nucleus through interaction with NUP153, NUP358, TNPO3, and CPSF-6. In the later stages of the HIV-1 life cycle, CA plays an essential role in the maturation step as a constituent of the Gag polyprotein. In the final phase of maturation, Gag is cleaved, and CA is released, allowing for the assembly of CA into a fullerene cone, known as the capsid core. The fullerene cone consists of ~250 CA hexamers and 12 CA pentamers and encloses the viral genome and other essential viral proteins for the next round of infection. As research continues to elucidate the role of CA in the HIV-1 life cycle and the importance of the capsid protein becomes more apparent, CA displays potential as a therapeutic target for the development of HIV-1 inhibitors.


2013 ◽  
Vol 288 (23) ◽  
pp. 16451-16459 ◽  
Author(s):  
Thomas Becker ◽  
Susanne E. Horvath ◽  
Lena Böttinger ◽  
Natalia Gebert ◽  
Günther Daum ◽  
...  

The mitochondrial outer membrane contains proteinaceous machineries for the import and assembly of proteins, including TOM (translocase of the outer membrane) and SAM (sorting and assembly machinery). It has been shown that the dimeric phospholipid cardiolipin is required for the stability of TOM and SAM complexes and thus for the efficient import and assembly of β-barrel proteins and some α-helical proteins of the outer membrane. Here, we report that mitochondria deficient in phosphatidylethanolamine (PE), the second non-bilayer-forming phospholipid, are impaired in the biogenesis of β-barrel proteins, but not of α-helical outer membrane proteins. The stability of TOM and SAM complexes is not disturbed by the lack of PE. By dissecting the import steps of β-barrel proteins, we show that an early import stage involving translocation through the TOM complex is affected. In PE-depleted mitochondria, the TOM complex binds precursor proteins with reduced efficiency. We conclude that PE is required for the proper function of the TOM complex.


2014 ◽  
Vol 25 (1) ◽  
pp. 145-159 ◽  
Author(s):  
Qinfang Shen ◽  
Koji Yamano ◽  
Brian P. Head ◽  
Sumihiro Kawajiri ◽  
Jesmine T. M. Cheung ◽  
...  

Mitochondrial fission is mediated by the dynamin-related protein Drp1 in metazoans. Drp1 is recruited from the cytosol to mitochondria by the mitochondrial outer membrane protein Mff. A second mitochondrial outer membrane protein, named Fis1, was previously proposed as recruitment factor, but Fis1−/− cells have mild or no mitochondrial fission defects. Here we show that Fis1 is nevertheless part of the mitochondrial fission complex in metazoan cells. During the fission cycle, Drp1 first binds to Mff on the surface of mitochondria, followed by entry into a complex that includes Fis1 and endoplasmic reticulum (ER) proteins at the ER–mitochondrial interface. Mutations in Fis1 do not normally affect fission, but they can disrupt downstream degradation events when specific mitochondrial toxins are used to induce fission. The disruptions caused by mutations in Fis1 lead to an accumulation of large LC3 aggregates. We conclude that Fis1 can act in sequence with Mff at the ER–mitochondrial interface to couple stress-induced mitochondrial fission with downstream degradation processes.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Johanna Patricia Daily

ABSTRACT The most advanced vaccine against Plasmodium falciparum malaria, RTS,S/AS01, provides partial protection in infants and children living in areas of malaria endemicity. Further understanding its mechanisms of protection may allow the development of improved second-generation vaccines. The RTS,S/AS01 vaccine targets the sporozoites injected by mosquito vectors into the dermis which then travel into the blood stream to establish infection in the liver. Flores-Garcia et al. (Y. Flores-Garcia, G. Nasir, C. S. Hopp, C. Munoz, et al., mBio 9:e02194-18, 2018, https://doi.org/10.1128/mBio.02194-18) shed light on early protective responses occurring in the dermis in immunized animals. They demonstrated that immunization impairs sporozoite motility and entry into blood vessels. Furthermore, they established that challenge experiments performed using a dermal route conferred greater protection than intravenous challenge in immunized mice. Thus, the dermal challenge approach captures the additional protective mechanisms occurring in the dermis that reflect the natural physiology of infection. Those studies highlighted the fascinating biology of skin-stage sporozoites and provided additional insights into vaccine-induced protection.


Author(s):  
Lina Chen ◽  
Zhongyuan Zheng ◽  
Hui Liu ◽  
Xi Wang ◽  
Shuiqing Qu ◽  
...  

Malaria parasites induce morphological and biochemical changes in the membranes of parasite-infected red blood cells (iRBCs) for propagation, with artemisinin combination therapies as the first-line treatments. To understand whether artemisinin targets or interacts with iRBC membrane proteins, this study investigated the molecular changes caused by dihydroartemisinin (DHA), an artemisinin derivative, in Plasmodium falciparum 3D7 using a combined transcriptomic and membrane proteomic profiling approach.


Sign in / Sign up

Export Citation Format

Share Document