scholarly journals The Inorganic Nutrient Regime and the mre Genes Regulate Cell and Filament Size and Morphology in the Phototrophic Multicellular Bacterium Anabaena

mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Cristina Velázquez-Suárez ◽  
Ignacio Luque ◽  
Antonia Herrero

ABSTRACT The model cyanobacterium Anabaena sp. PCC 7120 exhibits a phototrophic metabolism relying on oxygenic photosynthesis and a complex morphology. The organismic unit is a filament of communicated cells that may include cells specialized in different nutritional tasks, thus representing a paradigm of multicellular bacteria. In Anabaena, the inorganic carbon and nitrogen regime influenced not only growth, but also cell size, cell shape, and filament length, which also varied through the growth cycle. When using combined nitrogen, especially with abundant carbon, cells enlarged and elongated during active growth. When fixing N2, which imposed lower growth rates, shorter and smaller cells were maintained. In Anabaena, gene homologs to mreB, mreC, and mreD form an operon that was expressed at higher levels during the phase of fastest growth. In an ntcA mutant, mre transcript levels were higher than in the wild type and, consistently, cells were longer. Negative regulation by NtcA can explain that Anabaena cells were longer in the presence of combined nitrogen than in diazotrophic cultures, in which the levels of NtcA are higher. mreB, mreC, and mreD mutants could grow with combined nitrogen, but only the latter mutant could grow diazotrophically. Cells were always larger and shorter than wild-type cells, and their orientation in the filament was inverted. Consistent with increased peptidoglycan width and incorporation in the intercellular septa, filaments were longer in the mutants, suggesting a role for MreB, MreC, and MreD in the construction of septal peptidoglycan that could affect intercellular communication required for diazotrophic growth. IMPORTANCE Most studies on the determination of bacterial cell morphology have been conducted in heterotrophic organisms. Here, we present a study of how the availability of inorganic nitrogen and carbon sources influence cell size and morphology in the context of a phototrophic metabolism, as found in the multicellular cyanobacterium Anabaena. In Anabaena, the expression of the MreB, MreC, and MreD proteins, which influence cell size and length, are regulated by NtcA, a transcription factor that globally coordinates cellular responses to the C-to-N balance of the cells. Moreover, MreB, MreC, and MreD also influence septal peptidoglycan construction, thus affecting filament length and, possibly, intercellular molecular exchange that is required for diazotrophic growth. Thus, here we identified new roles for Mre proteins in relation to the phototrophic and multicellular character of a cyanobacterium, Anabaena.

2009 ◽  
Vol 191 (7) ◽  
pp. 2353-2361 ◽  
Author(s):  
Javier Paz-Yepes ◽  
Enrique Flores ◽  
Antonia Herrero

ABSTRACT In the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, the glnB gene is expressed at considerable levels both in the presence and in the absence of combined nitrogen, although induction, influenced by NtcA, takes place upon combined-nitrogen deprivation likely localized to vegetative cells. In spite of extensive efforts, a derivative of PCC 7120 lacking a functional glnB gene could be obtained only with constructs that lead to overexpression of a downstream open reading frames (ORF), particularly all2318. Strain CSP10 [glnB all2318(Con)] exhibited growth rates similar to those of the wild type when it was using nitrate or ammonium, but its diazotrophic growth was impaired. However, it differentiated heterocysts with a time course and distribution pattern similar to those of the wild type, although with no cyanophycin-containing polar granules, and exhibited impaired nitrogenase activity under oxic conditions, but not under microoxic conditions. In the mutant, NtcA-dependent inducion of the hetC and nifH genes was unaltered, but induction of the urtA gene and urea transport activity were increased. Active uptake of nitrite was also increased and insensitive to the ammonium-promoted inhibition observed for the wild type. Thus, regulation of the nitrite transport activity requires the glnB gene product. In the presence of a wild-type glnB gene, neither inactivation nor overexpression of all2318 produced an apparent phenotype. Thus, in an otherwise wild-type background, the glnB gene appears to be essential for growth of strain PCC 7120. For growth with combined nitrogen but not for diazotrophic growth, the requirement for glnB can be overridden by increasing the expression of all2318 (and/or ORFs downstream of it).


2021 ◽  
Author(s):  
Sergio Arévalo ◽  
Enrique Flores

Multicellular heterocyst-forming cyanobacteria such as Anabaena grow as chains of cells forming filaments that, under diazotrophic conditions, contain two cell types: vegetative cells that perform oxygenic photosynthesis and N2-fixing heterocysts. Along the filament, the intercellular septa contain a thick peptidoglycan layer that forms septal disks. Proteinaceous septal junctions connect the cells in the filament traversing the septal disks through nanopores. The fraCDE operon encodes proteins needed to make long filaments in Anabaena. FraC and FraD, located at the intercellular septa, are involved in the formation of septal junctions. Using a superfolder-GFP fusion, here we show that FraE is mainly localized to the poles of the heterocysts, consistent with the requirement of FraE for constriction of the heterocyst poles to form the “heterocyst neck”. A fraE insertional mutant was impaired by 22% to 38% in transfer of fluorescent calcein from vegetative cells to heterocysts. Septal disks were inspected in murein sacculi from heterocyst-enriched preparations. Unexpectedly, the diameter of the nanopores in heterocyst septa was about 1.5- to 2-fold larger than in vegetative cell septa. The number of these nanopores was 76% and 6% of the wild-type number in fraE or a fraC fraD mutant, respectively. Our results show that FraE is mainly involved in heterocyst maturation whereas FraC and FraD are needed for the formation of the large nanopores of heterocyst septa as they are for vegetative cell nanopores. Additionally, arrays of small pores conceivably involved in polysaccharide export were observed close to the disks in the heterocyst murein sacculi preparations. IMPORTANCE Intercellular communication, an essential attribute of multicellularity, is required for diazotrophic growth in heterocyst-forming cyanobacteria such as Anabaena, in which the cells are connected by proteinaceous septal junctions that are structural analogs of metazoan connexons. The septal junctions allow molecular intercellular diffusion traversing the septal peptidoglycan through nanopores. In Anabaena the fraCDE operon encodes septal proteins essential for intercellular communication. FraC and FraD are components of the septal junctions along the filament, whereas here we show that FraE is mainly present at the heterocyst poles. We found that the intercellular septa in murein sacculi from heterocysts contain nanopores that are larger than those in vegetative cells, establishing a previously unknown difference between heterocyst and vegetative cell septa in Anabaena.


Plant Science ◽  
2021 ◽  
Vol 305 ◽  
pp. 110830
Author(s):  
L. Medina-Puche ◽  
F.J. Martínez-Rivas ◽  
F.J. Molina-Hidalgo ◽  
J.A. García-Gago ◽  
J.A. Mercado ◽  
...  

F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 142
Author(s):  
Phillip B Grovenstein ◽  
Darryel A Wilson ◽  
Kathryn D Lankford ◽  
Kelsey A Gaston ◽  
Surangi Perera ◽  
...  

The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study all aspects of oxygenic photosynthesis. Chlorophyll (Chl) and heme are major tetrapyrroles that play an essential role in energy metabolism in photosynthetic organisms. These tetrapyrroles are synthesized via a common branched pathway that involves mainly nuclear encoded enzymes. One of the enzymes in the pathway is Mg chelatase (MgChel) which inserts Mg2+ into protoporphyrin IX (PPIX, proto) to form Magnesium-protoporphyrin IX (MgPPIX, Mgproto), the first biosynthetic intermediate in the Chl branch. The GUN4 (genomes uncoupled 4) protein is not essential for the MgChel activity but has been shown to significantly stimulate its activity. We have isolated a light sensitive mutant, 6F14, by random DNA insertional mutagenesis. 6F14 cannot tolerate light intensities higher than 90-100 μmol photons m-2 s-1. It shows a light intensity dependent progressive photo-bleaching. 6F14 is incapable of photo-autotrophic growth under light intensity higher than 100 μmol photons m-2 s-1. PCR based analyses show that in 6F14 the insertion of the plasmid outside the GUN4 locus has resulted in a genetic rearrangement of the GUN4 gene and possible deletions in the genomic region flanking the GUN4 gene. Our gun4 mutant has a Chl content very similar to that in the wild type in the dark and is very sensitive to fluctuations in the light intensity in the environment unlike the earlier identified Chlamydomonas gun4 mutant. Complementation with a functional copy of the GUN4 gene restored light tolerance, Chl biosynthesis and photo-autotrophic growth under high light intensities in 6F14. 6F14 is the second gun4 mutant to be identified in C. reinhardtii. Additionally, we show that our two gun4 complements over-express the GUN4 protein and show a higher Chl content per cell compared to that in the wild type strain.


1985 ◽  
Vol 75 (1) ◽  
pp. 357-376 ◽  
Author(s):  
J.M. Mitchison ◽  
P. Nurse

The cylindrical cells of Schizosaccharomyces pombe grow in length by extension at the ends and not the middle. At the beginning of the cell cycle, growth is restricted to the ‘old end’, which existed in the previous cycle. Later on, the ‘new end’, formed from the septum, starts to grow at a point in the cycle that we have called NETO (‘new end take-off’). Fluorescence microscopy on cells stained with Calcofluor has been used to study NETO in size mutants, in blocked cdc mutants and with different growth temperatures and media. In wild-type cells (strain 972) NETO happens at 0.34 of the cycle with a cell length of 9.5 microns. With size mutants that are smaller at division, NETO takes place at the same size (9.0-9.5 microns) but this is not achieved until later in the cycle. Another control operates in larger size mutants since NETO occurs at the same stage of the cycle (about 0.32) as in wild type but at a larger cell size. This control is probably a requirement to have completed an event in early G2, since most cdc mutant cells blocked before this point in the cycle do not show NETO whereas most of those blocked in late G2 do show it. We conclude that NETO only happens if: (1) the cell length is greater than a critical value of 9.0-9.5 microns; and (2) the cell has traversed the first 0.3-0.35 of the cycle and passed early G2. NETO is delayed in poor media, in which cell size is also reduced. Temperature has little effect on NETO under steady-state conditions, but there is a transient delay for some hours after a temperature shift. NETO is later in another wild-type strain, 132. Time-lapse photomicrography was used to follow the rates of length growth in single cells. Wild-type cells showed two linear segments during the first 75% of the cycle. There was a rate-change point (RCP), coincident with NETO, where the rate of total length extension increased by 35%. This increase was not due simply to the start of new-end growth, since old-end growth slowed down in some cells at the RCP. cdc 11.123 is a mutant in which septation and division is blocked at 35 degrees C but nuclear division continues.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 7 ◽  
pp. 11-17
Author(s):  
L.R. Fletcher ◽  
B.L. Sutherland ◽  
C.G. Fletcher

The health and production of sheep grazing perennial ryegrass with and without wild-type endophyte (Neotyphodium lolii) has been studied in several trials over a number of years. Lambs/ hoggets grazing predominantly perennial ryegrass swards with endophyte developed moderate to severe ryegrass staggers in summer and autumn, while those grazing endophyte-free ryegrass did not. Lambs/hoggets grazing ryegrass with endophyte also had more dags, lower growth rates, lower plasma prolactin levels, higher body temperatures and respiration rates under warm humid conditions. Most of these adverse responses were more severe in summer and autumn when endophyte toxin concentrations were highest. Many of these symptoms are similar to those described for the "autumn ill thrift" syndrome in New Zealand. Keywords: dags, endophyte, flystrike, growth rates, hyperthermia, Neotyphodium, perennial ryegrass, prolactin, ryegrass staggers, sheep


1982 ◽  
Vol 92 (1) ◽  
pp. 170-175 ◽  
Author(s):  
M R Kuchka ◽  
J W Jarvik

A mutant of Chlamydomonas reinhardtii with a variable number of flagella per cell has been used to investigate flagellar size control. The mutant and wild-type do not differ in cell size nor in flagellar length, yet the size of the intracellular pool of flagellar precursor protein can differ dramatically among individual mutant cells, with, for example, triflagellate cells having three times the pool of monoflagellate cells. Because cells of the same size, but with very different pool sizes, have flagella of identical length, it appears that the concentration of the unassembled flagellar precursor protein pool does not regulate flagellar length. The relation between cell size, pool size, and flagellar length has also been investigated for wild-type cells of different sizes and ploidies. Again, flagellar length appears to be maintained independent of pool size or concentration.


2008 ◽  
Vol 190 (13) ◽  
pp. 4648-4659 ◽  
Author(s):  
Daniel Paredes-Sabja ◽  
Barbara Setlow ◽  
Peter Setlow ◽  
Mahfuzur R. Sarker

ABSTRACT Spores of Clostridium perfringens possess high heat resistance, and when these spores germinate and return to active growth, they can cause gastrointestinal disease. Work with Bacillus subtilis has shown that the spore's dipicolinic acid (DPA) level can markedly influence both spore germination and resistance and that the proteins encoded by the spoVA operon are essential for DPA uptake by the developing spore during sporulation. We now find that proteins encoded by the spoVA operon are also essential for the uptake of Ca2+ and DPA into the developing spore during C. perfringens sporulation. Spores of a spoVA mutant had little, if any, Ca2+ and DPA, and their core water content was approximately twofold higher than that of wild-type spores. These DPA-less spores did not germinate spontaneously, as DPA-less B. subtilis spores do. Indeed, wild-type and spoVA C. perfringens spores germinated similarly with a mixture of l-asparagine and KCl (AK), KCl alone, or a 1:1 chelate of Ca2+ and DPA (Ca-DPA). However, the viability of C. perfringens spoVA spores was 20-fold lower than the viability of wild-type spores. Decoated wild-type and spoVA spores exhibited little, if any, germination with AK, KCl, or exogenous Ca-DPA, and their colony-forming efficiency was 103- to 104-fold lower than that of intact spores. However, lysozyme treatment rescued these decoated spores. Although the levels of DNA-protective α/β-type, small, acid-soluble spore proteins in spoVA spores were similar to those in wild-type spores, spoVA spores exhibited markedly lower resistance to moist heat, formaldehyde, HCl, hydrogen peroxide, nitrous acid, and UV radiation than wild-type spores did. In sum, these results suggest the following. (i) SpoVA proteins are essential for Ca-DPA uptake by developing spores during C. perfringens sporulation. (ii) SpoVA proteins and Ca-DPA release are not required for C. perfringens spore germination. (iii) A low spore core water content is essential for full resistance of C. perfringens spores to moist heat, UV radiation, and chemicals.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Melissa S. Roth ◽  
Daniel J. Westcott ◽  
Masakazu Iwai ◽  
Krishna K. Niyogi

Abstract Global primary production is driven largely by oxygenic photosynthesis, with algae as major contributors. The green alga Chromochloris zofingiensis reversibly switches off photosynthesis in the presence of glucose in the light and augments production of biofuel precursors (triacylglycerols) and the high-value antioxidant astaxanthin. Here we used forward genetics to reveal that this photosynthetic and metabolic switch is mediated by the glycolytic enzyme hexokinase (CzHXK1). In contrast to wild-type, glucose-treated hxk1 mutants do not shut off photosynthesis or accumulate astaxanthin, triacylglycerols, or cytoplasmic lipid droplets. We show that CzHXK1 is critical for the regulation of genes related to photosynthesis, ketocarotenoid synthesis and fatty acid biosynthesis. Sugars play fundamental regulatory roles in gene expression, physiology, metabolism, and growth in plants and animals, and we introduce a relatively simple, emerging model system to investigate conserved eukaryotic sugar sensing and signaling at the base of the green lineage.


2001 ◽  
Vol 183 (8) ◽  
pp. 2654-2661 ◽  
Author(s):  
Francis C. Y. Wong ◽  
John C. Meeks

ABSTRACT A novel gene, hetF, was identified as essential for heterocyst development in the filamentous cyanobacterium Nostoc punctiforme strain ATCC 29133. In the absence of combined nitrogen, hetF mutants were unable to differentiate heterocysts, whereas extra copies of hetF intrans induced the formation of clusters of heterocysts. Sequences hybridizing to a hetF probe were detected only in heterocyst-forming cyanobacteria. The inactivation and multicopy effects of hetF were similar to those of hetR, which encodes a self-degrading serine protease thought to be a central regulator of heterocyst development. Increased transcription ofhetR begins in developing cells 3 to 6 h after deprivation for combined nitrogen (N step-down), and the HetR protein specifically accumulates in heterocysts. In the hetFmutant, this increase in hetR transcription was delayed, and a hetR promoter::green fluorescent protein (GFP) transcriptional reporter indicated that increased transcription of hetR occurred in all cells rather than only in developing heterocysts. When a fully functional HetR-GFP fusion protein was expressed in the hetF mutant from a multicopy plasmid, HetR-GFP accumulated nonspecifically in all cells under nitrogen-replete conditions; when expressed in the wild type, HetR-GFP was observed only in heterocysts after N step-down. HetF therefore appears to cooperate with HetR in a positive regulatory pathway and may be required for the increased transcription of hetR and localization of the HetR protein in differentiating heterocysts.


Sign in / Sign up

Export Citation Format

Share Document