scholarly journals Clostridioides difficile Phosphoproteomics Shows an Expansion of Phosphorylated Proteins in Stationary Growth Phase

mSphere ◽  
2022 ◽  
Author(s):  
Wiep Klaas Smits ◽  
Yassene Mohammed ◽  
Arnoud H. de Ru ◽  
Valentina Cordo' ◽  
Annemieke H. Friggen ◽  
...  

In this paper, we present a comprehensive analysis of protein phosphorylation in the Gram-positive enteropathogen Clostridioides difficile . To date, only limited evidence on the role of phosphorylation in the regulation of this organism has been published; the current study is expected to form the basis for research on this posttranslational modification in C. difficile .  

2003 ◽  
Vol 185 (23) ◽  
pp. 7008-7014 ◽  
Author(s):  
Benchamas Subsin ◽  
Mark S. Thomas ◽  
Gerd Katzenmeier ◽  
Jonathan G. Shaw ◽  
Sumalee Tungpradabkul ◽  
...  

ABSTRACT The Burkholderia pseudomallei rpoS gene was identified, and an rpoS null mutant was constructed. The mutant was shown to have an increased sensitivity to carbon starvation and oxidative stress. By using rpoS-lacZ fusions, transcription of rpoS was shown to be growth phase regulated, reaching a peak upon entry into stationary phase.


mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Kathryn C. Rahlwes ◽  
Sarah H. Osman ◽  
Yasu S. Morita

ABSTRACT The mycobacterial cell envelope has a diderm structure, composed of an outer mycomembrane, an arabinogalactan-peptidoglycan cell wall, a periplasm, and an inner membrane. Lipomannan (LM) and lipoarabinomannan (LAM) are structural and immunomodulatory components of this cell envelope. LM/LAM biosynthesis involves a number of mannosyltransferases and acyltransferases, and MptA is an α1,6-mannosyltransferase involved in the final extension of the mannan chain. Recently, we reported the periplasmic protein LmeA being involved in the maturation of the mannan backbone in Mycobacterium smegmatis. Here, we examined the role of LmeA under stress conditions. We found that lmeA transcription was upregulated under two stress conditions: stationary growth phase and nutrient starvation. Under both conditions, LAM was decreased, but LM was relatively stable, suggesting that maintaining the cellular level of LM under stress is important. Surprisingly, the protein levels of MptA were decreased in an lmeA deletion (ΔlmeA) mutant under both stress conditions. The transcript levels of mptA in the ΔlmeA mutant were similar to or even higher than those in the wild type, indicating that the decrease of MptA protein was a posttranscriptional event. The ΔlmeA mutant was unable to maintain the cellular level of LM under stress, consistent with the decrease in MptA. Even during active growth, overexpression of LmeA led the cells to produce more LM and become more resistant to several antibiotics. Altogether, our study reveals the roles of LmeA in the homeostasis of the MptA mannosyltransferase, particularly under stress conditions, ensuring the stable expression of LM and the maintenance of cell envelope integrity. IMPORTANCE Mycobacteria differentially regulate the cellular amounts of lipoglycans in response to environmental changes, but the molecular mechanisms of this regulation remain unknown. Here, we demonstrate that cellular lipoarabinomannan (LAM) levels rapidly decline under two stress conditions, stationary growth phase and nutrient starvation, while the levels of another related lipoglycan, lipomannan (LM), stay relatively constant. The persistence of LM under stress correlated with the maintenance of two key mannosyltransferases, MptA and MptC, in the LM biosynthetic pathway. We further showed that the stress exposures lead to the upregulation of lmeA gene expression and that the periplasmic protein LmeA plays a key role in maintaining the enzyme MptA and its product LM under stress conditions. These findings reveal new aspects of how lipoglycan biosynthesis is regulated under stress conditions in mycobacteria.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Michal Meir ◽  
Anna Rozenblit ◽  
Simona Fliger ◽  
Yuval Geffen ◽  
Daniel Barkan

Abstract Background Tolerance to antibiotics and persistence are associated with antibiotic treatment failures, chronic-relapsing infections, and emerging antibiotic resistance in various bacteria, including Staphylococcus aureus. Mechanisms of persistence are largely unknown, yet have been linked to physiology under low-ATP conditions and the metabolic-inactive state. EttA is an ATP-binding cassette protein, linked in Eschrechia coli to ribosomal hibernation and fitness in stationary growth phase, yet its role in S. aureus physiology is unknown. Results Using whole genome sequencing (WGS) of serial clinical isolates, we identified an EttA-negative S. aureus mutant (ettAstop), and its isogenic wild-type counterpart. We used these two isogenic clones to investigate the role of ettA in S. aureus physiology in starvation and antibiotic stress, and test its role in persistence and antibiotic tolerance. ettAstop and its WT counterpart were similar in their antibiotic resistance profiles to multiple antibiotics. Population dynamics of ettAstop and the WT were similar in low-nutrient setting, with similar recovery from stationary growth phase or starvation. Supra-bacteriocidal concentration of cefazolin had the same killing effect on ettAstop and WT populations, with no difference in persister formation. Conclusions Lack of ettA does not affect S. aureus antibiotic resistance, beta-lactam tolerance, resilience to starvation or fitness following starvation. We conclude the role of ettA in S. aureus physiology is limited or redundant with another, unidentified gene. WGS of serial clinical isolates may enable investigation of other single genes involved in S. aureus virulence, and specifically persister cell formation.


2018 ◽  
Vol 84 (13) ◽  
pp. e00604-18 ◽  
Author(s):  
Janina R. Juengert ◽  
Cameron Patterson ◽  
Dieter Jendrossek

ABSTRACTIn this study, we screened poly(3-hydroxybutyrate) (PHB) synthase PhaC1 and PHB depolymerase PhaZa1 ofRalstonia eutrophafor the presence of phosphorylated residues during the PHB accumulation and PHB degradation phases. Thr373 of PHB synthase PhaC1 was phosphorylated during the stationary growth phase but was not modified during the exponential and PHB accumulation phases. Ser35 of PHB depolymerase PhaZa1 was identified in the phosphorylated form during both the exponential and stationary growth phases. Additional phosphosites were identified for both proteins in sample-dependent forms. Site-directed mutagenesis of the codon for Thr373 and other phosphosites of PhaC1 revealed a strong negative impact on PHB synthase activity. Modifications of Thr26 and Ser35 of PhaZa1 reduced the ability ofR. eutrophato mobilize PHB in the stationary growth phase. Our results show that phosphorylation of PhaC1 and PhaZa1 can be important for the modulation of the activities of PHB synthase and PHB depolymerase.IMPORTANCEPoly(3-hydroxybutyrate) (PHB) and related polyhydroxyalkanoates (PHAs) are important intracellular carbon and energy storage compounds in many prokaryotes. The accumulation of PHB or PHAs increases the fitness of cells during periods of starvation and under other stress conditions. The simultaneous presence of PHB synthase (PhaC1) and PHB depolymerase (PhaZa1) on synthesized PHB granules inRalstonia eutropha(alternative designation,Cupriavidus necator) was previously shown in several laboratories. These findings imply that the activities of PHB synthase and PHB depolymerase should be regulated to avoid a futile cycle of simultaneous synthesis and degradation of PHB. Here, we addressed this question by identifying the phosphorylation sites on PhaC1 and PhaZa1 and by site-directed mutagenesis of the identified residues. Furthermore, we conductedin vitroandin vivoanalyses of PHB synthase activity and PHB contents.


mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Babita Adhikari Dhungel ◽  
Revathi Govind

ABSTRACT Clostridioides difficile is the leading cause of nosocomial infection and is the causative agent of antibiotic-associated diarrhea. The severity of the disease is directly associated with toxin production, and spores are responsible for the transmission and persistence of the organism. Previously, we characterized sin locus regulators SinR and SinR′ (we renamed it SinI), where SinR is the regulator of toxin production and sporulation. The SinI regulator acts as its antagonist. In Bacillus subtilis, Spo0A, the master regulator of sporulation, controls SinR by regulating the expression of its antagonist, sinI. However, the role of Spo0A in the expression of sinR and sinI in C. difficile had not yet been reported. In this study, we tested spo0A mutants in three different C. difficile strains, R20291, UK1, and JIR8094, to understand the role of Spo0A in sin locus expression. Western blot analysis revealed that spo0A mutants had increased SinR levels. Quantitative reverse transcription-PCR (qRT-PCR) analysis of its expression further supported these data. By carrying out genetic and biochemical assays, we show that Spo0A can bind to the upstream region of this locus to regulates its expression. This study provides vital information that Spo0A regulates the sin locus, which controls critical pathogenic traits such as sporulation, toxin production, and motility in C. difficile. IMPORTANCE Clostridioides difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. During infection, C. difficile spores germinate, and the vegetative bacterial cells produce toxins that damage host tissue. In C. difficile, the sin locus is known to regulate both sporulation and toxin production. In this study, we show that Spo0A, the master regulator of sporulation, controls sin locus expression. Results from our study suggest that Spo0A directly regulates the expression of this locus by binding to its upstream DNA region. This observation adds new detail to the gene regulatory network that connects sporulation and toxin production in this pathogen.


2008 ◽  
Vol 74 (15) ◽  
pp. 4847-4852 ◽  
Author(s):  
Anastasia Matthies ◽  
Thomas Clavel ◽  
Michael Gütschow ◽  
Wolfram Engst ◽  
Dirk Haller ◽  
...  

ABSTRACT The metabolism of isoflavones by gut bacteria plays a key role in the availability and bioactivation of these compounds in the intestine. Daidzein and genistein are the most common dietary soy isoflavones. While daidzein conversion yielding equol has been known for some time, the corresponding formation of 5-hydroxy-equol from genistein has not been reported previously. We isolated a strictly anaerobic bacterium (Mt1B8) from the mouse intestine which converted daidzein via dihydrodaidzein to equol as well as genistein via dihydrogenistein to 5-hydroxy-equol. Strain Mt1B8 was a gram-positive, rod-shaped bacterium identified as a member of the Coriobacteriaceae. Strain Mt1B8 also transformed dihydrodaidzein and dihydrogenistein to equol and 5-hydroxy-equol, respectively. The conversion of daidzein, genistein, dihydrodaidzein, and dihydrogenistein in the stationary growth phase depended on preincubation with the corresponding isoflavonoid, indicating enzyme induction. Moreover, dihydrogenistein was transformed even more rapidly in the stationary phase when strain Mt1B8 was grown on either genistein or daidzein. Growing the cells on daidzein also enabled conversion of genistein. This suggests that the same enzymes are involved in the conversion of the two isoflavones.


2010 ◽  
Vol 8 (1) ◽  
pp. 51 ◽  
Author(s):  
Niurka Meneses ◽  
Guillermo Mendoza-Hernández ◽  
Sergio Encarnación

PROTEOMICS ◽  
2018 ◽  
Vol 18 (14) ◽  
pp. 1800116 ◽  
Author(s):  
Micaela Cerletti ◽  
María Ines Giménez ◽  
Christian Tröetschel ◽  
Celeste D’ Alessandro ◽  
Ansgar Poetsch ◽  
...  

Author(s):  
yaqiu Zhang ◽  
Yiqing Deng ◽  
Juan Feng ◽  
Jianmei Hu ◽  
Haoxiang Chen ◽  
...  

In this study, an in-frame deletion of the luxS gene was constructed to reveal the role of LuxS in the physiology and virulence of V. harveyi. The statistical analysis showed no significant differences in the growth ability, biofilm formation, antibiotic susceptibility, virulence by intraperitoneal injection, and the ability of V. harveyi to colonize the spleen and liver of the pearl gentian grouper between the wild-type (WT) and the luxS mutant. However, the deletion of luxS decreased the secretion of extracellular protease, while increased the ability of swimming and swarming. Simultaneously, a luxS-deleted mutant showed overproduction of lateral flagella, and an intact luxS complemented the defect. Since motility is flagella dependent, 16 of V. harveyi flagella biogenesis related genes were selected for further analysis. Based on quantitative real-time reverse transcription-PCR (qRT-PCR), the expression levels of these genes, including the polar flagella genes flaB, flhA, flhF, flhB, flhF, fliS, and flrA and the lateral flagella genes flgA, flgB, fliE, fliF, lafA, lafK, and motY, were significantly up-regulated in the ΔluxS: pMMB207 (ΔluxS+) strain as compared with the V. harveyi 345: pMMB207 (WT+) and C-ΔluxS strains during the early, mid-exponential, and stationary growth phase.


2020 ◽  
Vol 202 (21) ◽  
Author(s):  
Hector Benito de la Puebla ◽  
David Giacalone ◽  
Alexei Cooper ◽  
Aimee Shen

ABSTRACT The nosocomial pathogen Clostridioides difficile is a spore-forming obligate anaerobe that depends on its aerotolerant spore form to transmit infections. Functional spore formation depends on the assembly of a proteinaceous layer known as the coat around the developing spore. In C. difficile, coat assembly depends on the conserved spore protein SpoIVA and the clostridial-organism-specific spore protein SipL, which directly interact. Mutations that disrupt their interaction cause the coat to mislocalize and impair spore formation. In Bacillus subtilis, SpoIVA is an ATPase that uses ATP hydrolysis to drive its polymerization around the forespore. Loss of SpoIVA ATPase activity impairs B. subtilis SpoIVA encasement of the forespore and activates a quality control mechanism that eliminates these defective cells. Since this mechanism is lacking in C. difficile, we tested whether mutations in the C. difficile SpoIVA ATPase motifs impact functional spore formation. Disrupting C. difficile SpoIVA ATPase motifs resulted in phenotypes that were typically >104-fold less severe than the equivalent mutations in B. subtilis. Interestingly, mutation of ATPase motif residues predicted to abrogate SpoIVA binding to ATP decreased the SpoIVA-SipL interaction, whereas mutation of ATPase motif residues predicted to disrupt ATP hydrolysis but maintain ATP binding enhanced the SpoIVA-SipL interaction. When a sipL mutation known to reduce binding to SpoIVA was combined with a spoIVA mutation predicted to prevent SpoIVA binding to ATP, spore formation was severely exacerbated. Since this phenotype is allele specific, our data imply that SipL recognizes the ATP-bound form of SpoIVA and highlight the importance of this interaction for functional C. difficile spore formation. IMPORTANCE The major pathogen Clostridioides difficile depends on its spore form to transmit disease. However, the mechanism by which C. difficile assembles spores remains poorly characterized. We previously showed that binding between the spore morphogenetic proteins SpoIVA and SipL regulates assembly of the protective coat layer around the forespore. In this study, we determined that mutations in the C. difficile SpoIVA ATPase motifs result in relatively minor defects in spore formation, in contrast with Bacillus subtilis. Nevertheless, our data suggest that SipL preferentially recognizes the ATP-bound form of SpoIVA and identify a specific residue in the SipL C-terminal LysM domain that is critical for recognizing the ATP-bound form of SpoIVA. These findings advance our understanding of how SpoIVA-SipL interactions regulate C. difficile spore assembly.


Sign in / Sign up

Export Citation Format

Share Document