scholarly journals Marine RNA Virus Quasispecies Are Distributed throughout the Oceans

mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Marli Vlok ◽  
Andrew S. Lang ◽  
Curtis A. Suttle

ABSTRACTRNA viruses, particularly genetically diverse members of thePicornavirales, are widespread and abundant in the ocean. Gene surveys suggest that there are spatial and temporal patterns in the composition of RNA virus assemblages, but data on their diversity and genetic variability in different oceanographic settings are limited. Here, we show that specific RNA virus genomes have widespread geographic distributions and that the dominant genotypes are under purifying selection. Genomes from three previously unknown picorna-like viruses (BC-1, -2, and -3) assembled from a coastal site in British Columbia, Canada, as well as marine RNA viruses JP-A, JP-B, andHeterosigma akashiwoRNA virus exhibited different biogeographical patterns. Thus, biotic factors such as host specificity and viral life cycle, and not just abiotic processes such as dispersal, affect marine RNA virus distribution. Sequence differences relative to reference genomes imply that virus quasispecies are under purifying selection, with synonymous single-nucleotide variations dominating in genomes from geographically distinct regions resulting in conservation of amino acid sequences. Conversely, sequences from coastal South Africa that mapped to marine RNA virus JP-A exhibited more nonsynonymous mutations, probably representing amino acid changes that accumulated over a longer separation. This biogeographical analysis of marine RNA viruses demonstrates that purifying selection is occurring across oceanographic provinces. These data add to the spectrum of known marine RNA virus genomes, show the importance of dispersal and purifying selection for these viruses, and indicate that closely related RNA viruses are pathogens of eukaryotic microbes across oceans.IMPORTANCEVery little is known about aquatic RNA virus populations and genome evolution. This is the first study that analyzes marine environmental RNA viral assemblages in an evolutionary and broad geographical context. This study contributes the largest marine RNA virus metagenomic data set to date, substantially increasing the sequencing space for RNA viruses and also providing a baseline for comparisons of marine RNA virus diversity. The new viruses discovered in this study are representative of the most abundant family of marine RNA viruses, theMarnaviridae, and expand our view of the diversity of this important group. Overall, our data and analyses provide a foundation for interpreting marine RNA virus diversity and evolution.

2008 ◽  
Vol 191 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Pavel S. Novichkov ◽  
Yuri I. Wolf ◽  
Inna Dubchak ◽  
Eugene V. Koonin

ABSTRACT In order to explore microevolutionary trends in bacteria and archaea, we constructed a data set of 41 alignable tight genome clusters (ATGCs). We show that the ratio of the medians of nonsynonymous to synonymous substitution rates (dN/dS) that is used as a measure of the purifying selection pressure on protein sequences is a stable characteristic of the ATGCs. In agreement with previous findings, parasitic bacteria, notwithstanding the sometimes dramatic genome shrinkage caused by gene loss, are typically subjected to relatively weak purifying selection, presumably owing to relatively small effective population sizes and frequent bottlenecks. However, no evidence of genome streamlining caused by strong selective pressure was found in any of the ATGCs. On the contrary, a significant positive correlation between the genome size, as well as gene size, and selective pressure was observed, although a variety of free-living prokaryotes with very close selective pressures span nearly the entire range of genome sizes. In addition, we examined the connections between the sequence evolution rate and other genomic features. Although gene order changes much faster than protein sequences during the evolution of prokaryotes, a strong positive correlation was observed between the “rearrangement distance” and the amino acid distance, suggesting that at least some of the events leading to genome rearrangement are subjected to the same type of selective constraints as the evolution of amino acid sequences.


Author(s):  
Talia Kustin ◽  
Adi Stern

Abstract RNA viruses are responsible for some of the worst pandemics known to mankind, including outbreaks of Influenza, Ebola, and COVID-19. One major challenge in tackling RNA viruses is the fact they are extremely genetically diverse. Nevertheless, they share common features that include their dependence on host cells for replication, and high mutation rates. We set out to search for shared evolutionary characteristics that may aid in gaining a broader understanding of RNA virus evolution, and constructed a phylogeny-based data set spanning thousands of sequences from diverse single-stranded RNA viruses of animals. Strikingly, we found that the vast majority of these viruses have a skewed nucleotide composition, manifested as adenine rich (A-rich) coding sequences. In order to test whether A-richness is driven by selection or by biased mutation processes, we harnessed the effects of incomplete purifying selection at the tips of virus phylogenies. Our results revealed consistent mutational biases toward U rather than A in genomes of all viruses. In +ssRNA viruses, we found that this bias is compensated by selection against U and selection for A, which leads to A-rich genomes. In −ssRNA viruses, the genomic mutational bias toward U on the negative strand manifests as A-rich coding sequences, on the positive strand. We investigated possible reasons for the advantage of A-rich sequences including weakened RNA secondary structures, codon usage bias, and selection for a particular amino acid composition, and conclude that host immune pressures may have led to similar biases in coding sequence composition across very divergent RNA viruses.


1999 ◽  
Vol 73 (9) ◽  
pp. 7710-7721 ◽  
Author(s):  
Angela M. Baldo ◽  
Marcella A. McClure

ABSTRACT dUTPase is a ubiquitous and essential enzyme responsible for regulating cellular levels of dUTP. The dut gene exists as single, tandemly duplicated, and tandemly triplicated copies. Crystallized single-copy dUTPases have been shown to assemble as homotrimers. dUTPase is encoded as an auxiliary gene in a number of virus genomes. The origin of viral dut genes has remained unresolved since their initial discovery. A comprehensive analysis of dUTPase amino acid sequence relationships was performed to explore the evolutionary dynamics of dut in viruses and their hosts. Our data set, comprised of 24 host and 51 viral sequences, includes representative sequences from available eukaryotes, archaea, eubacteria cells, and viruses, including herpesviruses. These amino acid sequences were aligned by using a hidden Markov model approach developed to align divergent data. Known secondary structures from single-copy crystals were mapped onto the aligned duplicate and triplicate sequences. We show how duplicated dUTPases might fold into a monomer, and we hypothesize that triplicated dUTPases also assemble as monomers. Phylogenetic analysis revealed at least five viral dUTPase sequence lineages in well-supported monophyletic clusters with eukaryotic, eubacterial, and archaeal hosts. We have identified all five as strong examples of horizontal transfer as well as additional potential transfer of dut genes among eubacteria, between eubacteria and viruses, and between retroviruses. The evidence for horizontal transfers is particularly interesting since eukaryotic dutgenes have introns, while DNA virus dut genes do not. This implies that an intermediary retroid agent facilitated the horizontal transfer process between host mRNA and DNA viruses.


2017 ◽  
Vol 3 (2) ◽  
Author(s):  
Bas B. Oude Munnink ◽  
My V.T. Phan ◽  
Peter Simmonds ◽  
Marion P.G. Koopmans ◽  
Paul Kellam ◽  
...  

Abstract Porcine stool-associated RNA virus (posavirus), and Human stool-associated RNA virus (husavirus) are viruses in the order Picornavirales recently described in porcine and human fecal samples. The tentative group (Posa and Posa-like viruses: PPLVs) also includes fish stool-associated RNA virus (fisavirus) as well as members detected in insects (Drosophila subobscura and Anopheles sinensis) and parasites (Ascaris suum). As part of an agnostic deep sequencing survey of animal and human viruses in Vietnam, we detected three husaviruses in human fecal samples, two of which share 97–98% amino acid identity to Dutch husavirus strains and one highly divergent husavirus with only 25% amino acid identity to known husaviruses. In addition, the current study found forty-seven complete posavirus genomes from pigs, ten novel rat stool-associated RNA virus genomes (tentatively named rasavirus), and sixteen novel bat stool-associated RNA virus genomes (tentatively named basavirus). The five expected Picornavirales protein domains (helicase, 3C-protease, RNA-dependent RNA polymerase, and two Picornavirus capsid domain) were found to be encoded by all PPLV genomes. In addition, a nucleotide composition analysis revealed that the PPLVs shared compositional properties with arthropod viruses and predicted non-mammalian hosts for all PPLV lineages. The study adds seventy-six genomes to the twenty-nine PPLV genomes currently available and greatly extends our sequence knowledge of this group of viruses within the Picornavirales order.


2019 ◽  
Author(s):  
Lu Lu ◽  
Liam Brierley ◽  
Gail Robertson ◽  
Feifei Zhang ◽  
Samantha Lycett ◽  
...  

AbstractTo have epidemic potential, a pathogen must be able to spread in human populations, but of human-infective RNA viruses only a minority can do so. We investigated the evolution of human transmissibility through parallel analyses of 1755 virus genome sequences from 39 RNA virus genera. We identified 57 lineages containing human-transmissible species and estimated that at least 74% of these lineages have evolved directly from non-human viruses in other mammals or birds, a public health threat recently designated “Disease X”. Human-transmissible viruses rarely evolve from virus lineages that can infect but not transmit between humans. This result cautions against focussing surveillance and mitigation efforts narrowly on currently known human-infective virus lineages and supports calls for a better understanding of RNA virus diversity in non-human hosts.


2021 ◽  
Author(s):  
Yu-Yi Zhang ◽  
Yicong Chen ◽  
Xiaoman Wei ◽  
Jie Cui

AbstractOcean viromes remain poorly understood and little is known about the ecological factors driving aquatic RNA virus evolution. In this study, we used a meta-transcriptomic approach to characterize the viromes of 58 marine invertebrate species across three seas. This revealed the presence of 315 newly identified RNA viruses in nine viral families or orders (Durnavirales, Totiviridae, Bunyavirales, Hantaviridae, Picornavirales, Flaviviridae, Hepelivirales, Solemoviridae and Tombusviridae), with most of them are sufficiently divergent to the documented viruses. With special notice that we first time revealed an ocean virus rooting to mammalian hantaviruses. We also found evidence for possible host sharing and switch events during virus evolution. In sum, we demonstrated the hidden diversity of marine invertebrate RNA viruses.


Author(s):  
Felix Teufel ◽  
José Juan Almagro Armenteros ◽  
Alexander Rosenberg Johansen ◽  
Magnús Halldór Gíslason ◽  
Silas Irby Pihl ◽  
...  

AbstractSignal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce SignalP 6.0, a machine learning model that detects all five SP types and is applicable to metagenomic data.


2002 ◽  
Vol 76 (18) ◽  
pp. 9516-9525 ◽  
Author(s):  
Mauro Costa-Mattioli ◽  
Juan Cristina ◽  
Héctor Romero ◽  
Raoul Perez-Bercof ◽  
Didier Casane ◽  
...  

ABSTRACT Hepatitis A virus (HAV) is a positive-stranded RNA virus in the genus Hepatovirus in the family Picornaviridae. So far, analysis of the genetic variability of HAV has been based on two discrete regions, the VP1/2A junction and the VP1 N terminus. In this report, we determined the nucleotide and deduced amino acid sequences of the complete VP1 gene of 81 strains from France, Kosovo, Mexico, Argentina, Chile, and Uruguay and compared them with the sequences of seven strains of HAV isolated elsewhere. Overall strain variation in the complete VP1 gene was found to be as high as 23.7% at the nucleotide level and 10.5% at the amino acid level. Different phylogenetic methods revealed that HAV sequences form five distinct and well-supported genetic lineages. Within these lineages, HAV sequences clustered by geographical origin only for European strains. The analysis of the complete VP1 gene allowed insight into the mode of evolution of HAV and revealed the emergence of a novel variant with a 15-amino-acid deletion located on the VP1 region where neutralization escape mutations were found. This could be the first antigenic variant of HAV so far identified.


2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Marli Vlok ◽  
Andrew S Lang ◽  
Curtis A Suttle

Abstract Metagenomics has altered our understanding of microbial diversity and ecology. This includes its applications to viruses in marine environments that have demonstrated their enormous diversity. Within these are RNA viruses, many of which share genetic features with members of the order Picornavirales; yet, very few of these have been taxonomically classified. The only recognized family of marine RNA viruses is the Marnaviridae, which was founded based on discovery and characterization of the species Heterosigma akashiwo RNA virus. Two additional genera of marine RNA viruses, Labyrnavirus (one species) and Bacillarnavirus (three species), were subsequently defined within the order Picornavirales but not assigned to a family. We have defined a sequence-based framework for taxonomic classification of twenty marine RNA viruses into the family Marnaviridae. Using RNA-dependent RNA polymerase (RdRp) phylogeny and distance-based analyses, we assigned the genera Labyrnavirus and Bacillarnavirus to the family Marnaviridae and created four additional genera in the family: Locarnavirus (four species), Kusarnavirus (one species), Salisharnavirus (four species) and Sogarnavirus (six species). We used pairwise capsid protein comparisons to delineate species within families, with 75 per cent identity as the species demarcation threshold. The family displays high sequence diversities and Jukes–Cantor distances for both the RdRp and capsid genes, suggesting that the classified viruses are not representative of all of the virus diversity within the family and that there are many more extant taxa. Our proposed taxonomic framework provides a sound classification system for this group of viruses that will have broadly applicable principles for other viral groups. It is based on sequence data alone and provides a robust taxonomic framework to include viruses discovered via metagenomic studies, thereby greatly expanding the realm of viruses subject to taxonomic classification.


2021 ◽  
Vol 12 ◽  
Author(s):  
Patrice Bonny ◽  
Julien Schaeffer ◽  
Alban Besnard ◽  
Marion Desdouits ◽  
Jean Justin Essia Ngang ◽  
...  

Many recent pandemics have been recognized as zoonotic viral diseases. While their origins remain frequently unknown, environmental contamination may play an important role in emergence. Thus, being able to describe the viral diversity in environmental samples contributes to understand the key issues in zoonotic transmission. This work describes the use of a metagenomic approach to assess the diversity of eukaryotic RNA viruses in river clams and identify sequences from human or potentially zoonotic viruses. Clam samples collected over 2years were first screened for the presence of norovirus to verify human contamination. Selected samples were analyzed using metagenomics, including a capture of sequences from viral families infecting vertebrates (VirCapSeq-VERT) before Illumina NovaSeq sequencing. The bioinformatics analysis included pooling of data from triplicates, quality filtering, elimination of bacterial and host sequences, and a deduplication step before de novo assembly. After taxonomic assignment, the viral fraction represented 0.8–15% of reads with most sequences (68–87%) remaining un-assigned. Yet, several mammalian RNA viruses were identified. Contigs identified as belonging to the Astroviridae were the most abundant, with some nearly complete genomes of bastrovirus identified. Picobirnaviridae sequences were related to strains infecting bats, and few others to strains infecting humans or other hosts. Hepeviridae sequences were mostly related to strains detected in sponge samples but also strains from swine samples. For Caliciviridae and Picornaviridae, most of identified sequences were related to strains infecting bats, with few sequences close to human norovirus, picornavirus, and genogroup V hepatitis A virus. Despite a need to improve the sensitivity of our method, this study describes a large diversity of RNA virus sequences from clam samples. To describe all viral contaminants in this type of food, and being able to identify the host infected by viral sequences detected, may help to understand some zoonotic transmission events and alert health authorities of possible emergence.


Sign in / Sign up

Export Citation Format

Share Document