scholarly journals Changing Molecular Epidemiology of Vibrio cholerae Outbreaks in Shanghai, China

mSystems ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Dalong Hu ◽  
Zhiqiu Yin ◽  
Chao Yuan ◽  
Pan Yang ◽  
Chengqian Qian ◽  
...  

ABSTRACT The 7th cholera pandemic began in 1961 in Sulawesi, Indonesia, and then spread around the world in at least three waves. However, the lack of genome sequences for Vibrio cholerae strains under long-term surveillance in East Asia, especially in China, has restricted our understanding of the dynamics of the intracountry and intercountry evolution and transmission of the 7th-pandemic clones. In this study, we obtained the genome sequences of 60 V. cholerae strains isolated in Shanghai, the largest port in the world and the largest city in China, from 1961 to 2011. Our whole-genome-based phylogeny of 7th-pandemic strains revealed that all but one fell into five “stages,” most of which are single clades and share independent ancestors. Each stage dominated in succession for a period, with little overlap between them. In addition, two near-identical Shanghai strains belonging to a pre-7th-pandemic precursor and 4 nontoxigenic O1/O139 strains attributed to independent recombination events at the O-antigen loci were present. The major lineages of the 7th pandemic in Shanghai appeared to be closely related to V. cholerae strains isolated from South or Southeast Asia. Stage succession was consistently related to changes in society and human activity, implying that human-caused niche change may play a vital role in the cholera dynamics in Shanghai. IMPORTANCE V. cholerae is the causative agent of cholera, a life-threatening disease characterized by severe, watery diarrhea. The 7th pandemic started in Indonesia in 1961 and spread globally, currently infecting 1.3 million to 4 million people annually. Here, we applied whole-genome sequencing to analyze a long-term collection of V. cholerae clinical strains to reveal the phylogenetic background and evolutionary dynamics of the 7th pandemic in Shanghai, which had undergone breathtakingly rapid development in the last half-century. All but one of the Shanghai 7th-pandemic strains fell into five “stages” that were dominant in Shanghai and appeared to be closely related to 7th-pandemic strains of South or Southeast Asia. Our findings extended the understanding of the dynamics of the evolution and transmission of the 7th-pandemic clones in East Asia and the relationship between social changes and cholera epidemiology.

2020 ◽  
Vol 9 (49) ◽  
Author(s):  
Morag Livingstone ◽  
Kevin Aitchison ◽  
Mark Dagleish ◽  
David Longbottom

ABSTRACT Pneumonic pasteurellosis, caused by Pasteurella multocida, is a common respiratory infection of ruminants that has major economic and welfare implications throughout the world. Here, we report the annotated genome sequences of seven pathogenic strains of P. multocida that were isolated from cattle in the United Kingdom.


2018 ◽  
Vol 7 (21) ◽  
Author(s):  
Mohammad Tarequl Islam ◽  
Kevin Liang ◽  
Monica S. Im ◽  
Jonathan Winkjer ◽  
Shelby Busby ◽  
...  

We are reporting whole-genome sequences of nine Vibrio sp. isolates closely related to the waterborne human pathogen Vibrio cholerae.


Significance Last week, its partners in the ‘Quad’ grouping -- the United States, Japan and Australia -- agreed to help increase its vaccine manufacturing and exporting capacity. Each of the Quad members is wary of China, which like India is gifting and selling coronavirus jabs around the world. Impacts India’s manufacturing sector will attract more foreign direct investment. Greater cooperation over supply chains will help strengthen India-Australia ties. Indian pharma will in the long term aim to ease dependence on imports of active pharmaceutical ingredients from China.


2018 ◽  
Vol 7 (6) ◽  
Author(s):  
Marcela Carina Audisio ◽  
Leonardo Albarracín ◽  
Maria Julia Torres ◽  
Lucila Saavedra ◽  
Elvira Maria Hebert ◽  
...  

This report describes the draft genome sequences of Lactobacillus salivarius A3iob and Lactobacillus johnsonii CRL1647, probiotic strains isolated from the gut of honeybee Apis mellifera workers. The reads were generated by a whole-genome sequencing (WGS) strategy on an Illumina MiSeq sequencer and were assembled into contigs with total sizes of 2,054,490 and 2,137,413 bp for the A3iob and CRL1647 strains, respectively.


2018 ◽  
Vol 4 (suppl_1) ◽  
Author(s):  
Barbara Brito ◽  
Steven J Pauszek ◽  
Ethan J Hartwig ◽  
George R Smoliga ◽  
Le T Vu ◽  
...  

2018 ◽  
Vol 6 (26) ◽  
Author(s):  
Zhong Liang ◽  
Melissa Stephens ◽  
Victoria A. Ploplis ◽  
Shaun W. Lee ◽  
Francis J. Castellino

Whole-genome shotgun sequences and bottom-up assembly of contigs of six skin isolates of Streptococcus pyogenes, viz., NS88.3 (emm98.1), NS223 (emm91), NS455 (emm52), SS1448 (emm86.2), SS1572 (emm223), and SS1574 (emm224), are presented here. All contigs were annotated, and the gene arrangements and the inferred proteins were consistent with a pattern D classification.


2018 ◽  
Vol 7 (13) ◽  
Author(s):  
Yanhong Liu ◽  
Aixia Xu ◽  
Pina M. Fratamico ◽  
Christopher H. Sommers ◽  
Luca Rotundo ◽  
...  

Listeria monocytogenes is an important foodborne pathogen that causes listeriosis. Here, we report the draft genome sequences of seven L. monocytogenes strains isolated from food, environmental, and clinical sources.


2018 ◽  
Vol 7 (14) ◽  
Author(s):  
Jule Anna Horlbog ◽  
Hyein Jang ◽  
Gopal Gopinath ◽  
Roger Stephan ◽  
Claudia Guldimann

Here, we report the whole-genome sequences of six Listeria monocytogenes strains isolated from meat and milk products in Switzerland. All of these strains carry premature stop codons or amino acid deletions in inlA.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Ana A. Weil ◽  
Crystal N. Ellis ◽  
Meti D. Debela ◽  
Taufiqur R. Bhuiyan ◽  
Rasheduzzaman Rashu ◽  
...  

ABSTRACT Vibrio cholerae infection provides long-lasting protective immunity, while oral, inactivated cholera vaccines (OCV) result in more-limited protection. To identify characteristics of the innate immune response that may distinguish natural V. cholerae infection from OCV, we stimulated differentiated, macrophage-like THP-1 cells with live versus heat-inactivated V. cholerae with and without endogenous or exogenous cholera holotoxin (CT). Interleukin 23A gene (IL23A) expression was higher in cells exposed to live V. cholerae than in cells exposed to inactivated organisms (mean change, 38-fold; 95% confidence interval [95% CI], 4.0 to 42; P < 0.01). IL-23 secretion was also higher in cells exposed to live V. cholerae than in cells exposed to inactivated V. cholerae (mean change, 5.6-fold; 95% CI, 4.4 to 11; P < 0.001). This increase in IL-23 secretion was more marked than for other key innate immune cytokines (e.g., IL-1β and IL-6) and dependent on exposure to the combination of both live V. cholerae and CT. While IL-23 secretion was reduced following stimulation with either heat-inactivated wild-type V. cholerae or a live isogenic ctxAB mutant of V. cholerae, the addition of exogenous CT restored IL-23 secretion in combination with the live isogenic ctxAB mutant V. cholerae, but not when it was paired with stimulation by heat-inactivated V. cholerae. The posttranslational regulation of IL-23 under these conditions was dependent on the activity of the cysteine protease cathepsin B. In humans, IL-23 promotes the differentiation of Th17 cells to T follicular helper cells, which maintain and support long-term memory B cell generation after infection. Based on these findings, the stimulation of IL-23 production may be a determinant of protective immunity following V. cholerae infection. IMPORTANCE An episode of cholera provides better protection against reinfection than oral cholera vaccines, and the reasons for this are still under study. To better understand this, we compared the immune responses of human cells exposed to live Vibrio cholerae with those of cells exposed to heat-killed V. cholerae (similar to the contents of oral cholera vaccines). We also compared the effects of active cholera toxin and the inactive cholera toxin B subunit (which is included in some cholera vaccines). One key immune signaling molecule, IL-23, was uniquely produced in response to the combination of live bacteria and active cholera holotoxin. Stimulation with V. cholerae that did not produce the active toxin or was killed did not produce an IL-23 response. The stimulation of IL-23 production by cholera toxin-producing V. cholerae may be important in conferring long-term immunity after cholera.


2019 ◽  
Vol 8 (11) ◽  
Author(s):  
Victoria López-Alonso ◽  
Sagrario Ortiz ◽  
Joaquín V. Martínez-Suárez

Here, we present the draft genome sequences of seven Listeria monocytogenes strains isolated during three independent studies carried out in three stages of a poultry meat production chain. The genome sequences of these strains obtained from different stages can help to understand the possible transmission of L. monocytogenes.


Sign in / Sign up

Export Citation Format

Share Document