scholarly journals Consumption of Dietary Fiber from Different Sources during Pregnancy Alters Sow Gut Microbiota and Improves Performance and Reduces Inflammation in Sows and Piglets

mSystems ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Boshuai Liu ◽  
Xiaoyan Zhu ◽  
Yalei Cui ◽  
Wenjing Wang ◽  
Hua Liu ◽  
...  

ABSTRACT In pregnant and lactating sows, metabolism and immunity undergo drastic changes, which can lead to constipation, abortion, and intrauterine growth restriction (IUGR) and reduce production performance. Dietary fiber can regulate animal gut microbiota, alleviate inflammatory responses, and improve performance. Here, 48 sows (Large × Landrace) were randomly allocated to groups including, control, and with alfalfa meal (AM), beet pulp, and soybean skin dietary supplementation for 60 days of gestation. The AM diet decreased IUGR, increased food intake during lactation, and promoted the reproductive performance and physical condition of sows. Further, the AM diet significantly reduced markers of intestinal permeability (reactive oxygen species and endotoxin) in sow serum, and of systemic inflammation (interleukin-6 [IL-6] and tumor necrosis factor alpha) in sow feces and serum, as well as piglet serum, while it increased the anti-inflammatory marker, IL-10, in sow serum and feces. The AM diet also significantly affected gut microbiota by increasing the relative abundance of proinflammatory bacteria, while decreasing anti-inflammatory bacteria. Moreover, the total short-chain fatty acid (SCFA) content was higher in feces from sows fed an AM diet, with butyric acid content significantly higher during lactation, than in controls. Sow performance was correlated with intestinal permeability, inflammation, and gut microbiota, which were also vertically transmitted to piglets. Our results are significant for guiding feed management in the pig breeding industry. Further, the “sows to piglets” model provides a reference for the effect of dietary fiber on the gastrointestinal function of human mothers and infants. IMPORTANCE Although the direct effects of dietary fiber on gut microbiota composition have been studied extensively, systematic evaluation of different fiber sources on gut health and inflammatory responses of sows and their offspring has rarely been conducted. Excessive reactive oxygen species produced by overactive metabolic processes during late pregnancy and lactation of sows leads to increased endotoxin levels, disordered gut microbiota, decreased SCFA production, and secretion of proinflammatory factors, which in turn causes local inflammation of the gut, potential damage of the gut microbial barrier, increased gut permeability, increased blood endotoxin levels (resulting in systemic inflammation), and ultimately decreased sow and piglet performance. Our results showed that supplementation of the diet with alfalfa meal in mid and late pregnancy can reverse this process. Our findings lay a foundation for improving the gut health of sows and piglets and provide insights into the study of the gastrointestinal tract function in human mothers and infants.

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 19.2-19
Author(s):  
R. Audo ◽  
P. Sanchez ◽  
J. Mielle ◽  
L. Macia ◽  
B. Rivière ◽  
...  

Background:Patients with rheumatoid arthritis (RA) have an altered gut microbiota (dysbiosis) (1-3). This microbiota interacts with intestinal epithelium which can lead to an increased intestinal permeability, responsible for the passage of antigens and inflammatory molecules, and can therefore promote systemic inflammation. Gut microbiota tends to normalize with disease control (2), suggesting that systemic inflammation may directly influence the composition of microbiota and the gut barrier. It was shown in many inflammatory diseases that intestinal permeability is impaired, but to date there is very little data in RA.Objectives:In the present study, we evaluate the intestinal permeability in RA patients by analyzing tight junctions in colonic biopsies and serum markers.Methods:Colonic biopsies from 20 RA patients who underwent coloscopy for screening with normal histology were compared with those from 20 age and sex matched controls. ZO-1, occludin and claudin 2 junction proteins were evaluated by immunohistochemistry. The staining intensity was assessed by two blinded independent readers. The serum concentrations of LPS-binding protein (LBP), CD14s and zonulin were evaluated by ELISA in 25 patients naive of DMARDs, 41 patients before and after introduction of a DMARDs and 21 controls. Elevated zonulin in serum indicates an increase in intestinal permeability while LBP and CD14s indicate bacterial translocation.Results:ZO-1 expression was significantly lower in biopsies from patients with RA than controls (mean score ± SD of 1.6 ± 0.56 vs 2.0 ± 0.43; p = 0.01). Age, sex, disease duration and immunological status did not significantly influence the expression of colonic junction proteins. LBP and CD14s were higher in serum from RA patients naive of DMARDs than controls (p = 0.002 and p = 0.003). LBP, CD14s and zonulin levels significantly correlated with DAS28 (r = 0.61, p = 0.005; r = 0.51, p = 0.030 and r = 0.46, p = 0.049, respectively). After treatment, unlike non-responders, LBP and CD14s were significantly reduced in DMARD responders and variations in LBP and CD14s significantly correlated with changes in DAS28 (r = 0.46, p = 0.002 and r = 0, 33 and p = 0.030, respectively).Conclusion:This work is one of the first to explore intestinal permeability in RA and to show altered tight junction in colonic tissue from RA. This increased intestinal permeability appears to be related to the systemic inflammation. Improving the gut microbiota through food or probiotics could enhance the effect of treatments by limiting this amplification loop of inflammation.References:[1]Horta-Baas G, Romero-Figueroa MDS, Montiel-Jarquin AJ, Pizano-Zarate ML, Garcia-Mena J, Ramirez-Duran N. Intestinal Dysbiosis and Rheumatoid Arthritis: A Link between Gut Microbiota and the Pathogenesis of Rheumatoid Arthritis. J Immunol Res. 2017;2017:4835189.[2]Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895-905.[3]Maeda Y, Kurakawa T, Umemoto E, Motooka D, Ito Y, Gotoh K, et al. Dysbiosis Contributes to Arthritis Development via Activation of Autoreactive T Cells in the Intestine. Arthritis Rheumatol. 2016;68(11):2646-61.Disclosure of Interests:Rachel Audo: None declared, Pauline Sanchez: None declared, Julie Mielle: None declared, Laurence Macia: None declared, Benjamin Rivière: None declared, Cédric Lukas: None declared, Bernard Combe: None declared, Jacques Morel: None declared, Claire Daien Speakers bureau: Pfizer roche chugai fresenius BMS msd Novartis galapagos, Consultant of: Abivax abbbvie BMS roche chugai, Grant/research support from: Pfizer, roche-chugai, fresenius, msd


2021 ◽  
Author(s):  
Daisuke Oikawa ◽  
Min Gi ◽  
Hidetaka Kosako ◽  
Kouhei Shimizu ◽  
Hirotaka Takahashi ◽  
...  

Deubiquitylating enzymes (DUBs) regulate numerous cellular functions by removing ubiquitin modifications. We examined the effects of 88 human DUBs on linear ubiquitin chain assembly complex (LUBAC)-induced NF-κB activation, and identified OTUD1 as a potent suppressor. OTUD1 regulates the canonical NF-κB pathway by hydrolysing K63-linked ubiquitin chains from NF-κB signalling factors, including LUBAC. OTUD1 negatively regulates the canonical NF-κB activation, apoptosis, and necroptosis, whereas OTUD1 upregulates the interferon (IFN) antiviral pathway. The N-terminal intrinsically disordered region of OTUD1, which contains an EGTE motif, is indispensable for KEAP1-binding and NF-κB suppression. OTUD1 is involved in the KEAP1-mediated antioxidant response and reactive oxygen species (ROS)-induced cell death, oxeiptosis. In Otud1-/--mice, inflammation, oxidative damage, and cell death were enhanced in inflammatory bowel disease, acute hepatitis, and sepsis models. Thus, OTUD1 is a crucial regulator for the inflammatory, innate immune, and oxidative stress responses and ROS-associated cell death pathways.


2021 ◽  
Vol 14 ◽  
Author(s):  
Lydia Amari ◽  
Marc Germain

Extracellular vesicles (EVs) have emerged in the last decade as critical cell-to-cell communication devices used to carry nucleic acids and proteins between cells. EV cargo includes plasma membrane and endosomal proteins, but EVs also contain material from other cellular compartments, including mitochondria. Within cells, mitochondria are responsible for a large range of metabolic reactions, but they can also produce damaging levels of reactive oxygen species and induce inflammation when damaged. Consistent with this, recent evidence suggests that EV-mediated transfer of mitochondrial content alters metabolic and inflammatory responses of recipient cells. As EV mitochondrial content is also altered in some pathologies, this could have important implications for their diagnosis and treatment. In this review, we will discuss the nature and roles of mitochondrial EVs, with a special emphasis on the nervous system.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Guangfeng Geng ◽  
Jinhua Liu ◽  
Changlu Xu ◽  
Yandong yan Pei ◽  
Linbo Chen ◽  
...  

Erythropoietin (EPO) drives erythropoiesis and is secreted mainly by the kidney upon hypoxic or anemic stress. The paucity of EPO production in renal EPO-producing cells (REPs) causes renal anemia, one of the most common complications of chronic nephropathies. Although mitochondrial dysfunction is commonly observed in several renal and hematopoietic disorders, the mechanism by which mitochondrial quality control impacts renal anemia remains elusive. In this study, we showed that FUNDC1, a mitophagy receptor, plays a critical role in EPO-driven erythropoiesis induced by stresses. Mechanistically, EPO production is impaired in REPs in Fundc1-/- mice upon stresses, and the impairment is caused by the accumulation of damaged mitochondria, which consequently leads to the elevation of the reactive oxygen species (ROS) level and triggers inflammatory responses by up-regulating proinflammatory cytokines. These inflammatory factors promote the myofibroblastic transformation of REPs, resulting in the reduction of EPO production. We therefore provide a link between aberrant mitophagy and deficient EPO generation in renal anemia. Our results also suggest that the mitochondrial quality control safeguards REPs under stresses, which may serve as a potential therapeutic strategy for the treatment of renal anemia.


2018 ◽  
Author(s):  
Dali Ma ◽  
Maroun Bou-Sleiman ◽  
Pauline Joncour ◽  
Claire-Emmanuelle Indelicato ◽  
Michael Frochaux ◽  
...  

SummaryEukaryotic genomes encode several well-studied buffering mechanisms that robustly maintain invariant phenotypic outcome despite fluctuating environmental conditions. Here we show that the gut microbiota, represented by a single Drosophila facultative symbiont, Lactobacillus plantarum (LpWJL), acts also as a broad genetic buffer that masks the contribution of the cryptic genetic variations in the host under nutritional stress. During chronic under-nutrition, LpWJL consistently reduces variation in different host phenotypic traits and ensures robust organ patterning; LpWJL also decreases genotype-dependent expression variation, particularly for development-associated genes. We further demonstrate that LpWJL buffers via reactive oxygen species (ROS) signaling whose inhibition severely impairs microbiota-mediated phenotypic robustness. We thus identified an unexpected contribution of facultative symbionts to Drosophila fitness by assuring developmental robustness and phenotypic homogeneity in times of nutritional stress.


2012 ◽  
Vol 610-613 ◽  
pp. 794-797
Author(s):  
Yu Shang ◽  
Lan Lan Fan ◽  
Ling Zhang

Exposure to ambient particulate matter (PM) is found to be associated with adverse cardiopulmonary diseases. Endotoxin presented in PM is suggested to be one of the most important factors in triggering pro-inflammatory cytokine/chemokine release upon the exposure of PM. Pre-treated with endotoxin is found to enhance the inflammatory responses induced by PM in cultured cells. The aim of present study is to investigate the roles of endotoxin on the cytotoxicity and the generation of reactive oxygen species (ROS) induced by PM2.5 in a human lung epithelial cell line A549. The results find that PM2.5 induced a dose-dependent decrease in cell viability and pre-treated with endotoxin did not change the cytotoxicity of PM2.5 in A549 cells. Nevertheless the endotoxin significantly reduced the ROS generation in A549 induced by PM2.5 at the dose of 400 μg/mL. The results indicated that the combined effects of endotoxin and PM were complex and deserved further investigations.


2014 ◽  
Vol 13 (1) ◽  
pp. 20-26 ◽  
Author(s):  
I. D. Bespalovа

Object of research: to explore the relationship of leptin level in blood serum with markers of systemic inflammation and spontaneous production of cytokines and reactive oxygen species by blood mononuclear leukocytes at metabolic syndrome.Material and methods. We conducted a study of 50 patients with essential hypertension stage II in conjunction with the metabolic syndrome. Along with a complete clinical, laboratory and instrumental examination adopted in specialized cardiological clinic, were determined the concentration of markers of systemic inflammation and leptin in blood serum, as well as the relative abundance of the surface markers CD4+-, CD8+-lymphocytes and CD36+-monocytes, the level of spontaneous production of proand antiinflammatory cytokines and active oxygen species by blood mononuclear leukocytes.Results. It was found that patients with essential hypertension stage II with the MS having hyperleptinemia statistically significantly differ both as greater activity of systemic inflammation, and have a greater percentage of CD4+-lymphocytes and a higher level of spontaneous production of blood mononuclear leukocytes a number of proinflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α, MCP-1) and reactive oxygen species.


Sign in / Sign up

Export Citation Format

Share Document