U-Pb and oxygen isotope characteristics of Timanian- and Caledonian-age detrital zircons from the Brooks Range, Arctic Alaska, USA

2019 ◽  
Vol 131 (9-10) ◽  
pp. 1459-1479
Author(s):  
F.A. Robinson ◽  
J. Toro ◽  
V. Pease

AbstractThe Devonian connection between the Brooks Range of Alaska, USA, with the continental margin of Arctic Canada and its subsequent Jurassic–Cretaceous counterclockwise rotation to form the Amerasian Basin, is a highly debated topic in Arctic tectonics. This resource-rich region was assembled from terranes that formed part of Laurentia or Baltica, or were juvenile oceanic arcs in the early Paleozoic that were brought together during Caledonian Orogenesis and the subsequent collision that formed Pangea (Uralide Orogeny). Elements of these orogens, as well as older ones, are predicted to occur in the Brooks Range of Arctic Alaska. This study presents the first combined zircon U-Pb and oxygen data from six Brooks Range metasedimentary units with assumed Neoproterozoic to Devonian ages. Three distinct detrital zircon patterns are identified in these units: (1) those with Neoproterozoic maximum depositional ages characteristic of the Timanide Orogen of northern Baltica and adjacent parts of Siberia, (2) an almost unimodal Siluro–Ordovician (443.5 ± 2.3 Ma) detrital zircon population consistent with the oceanic Apoon arc believed to have existed off shore of northern Laurentia and to have accreted to the North Slope subterrane during the Caledonian event, and (3) those with Middle Devonian maximum depositional ages consistent with post-accretion extension during the final (Scandian) phase of Caledonian Orogenesis. Oxygen isotopes from the same zircons reveal minor to significant crustal contamination with approximately two thirds (n = 255/405) having δ18O values >5.9‰ (above the mantle field of 5.3 ± 0.6‰). Pattern 1 units exhibit a progressive increase in δ18O values throughout the Proterozoic (5.99 to 9.29‰) indicative of increasing crustal growth and Timanide age zircons yield average δ18O values of 7.18 ± 0.64‰ (n = 26) suggestive of more crustal influence than Caledonian age zircons, possibly reflecting northern Baltica signatures. The unimodal population in Pattern 2 yields average δ18O values of 5.49 ± 0.66‰ (n = 17) and 6.02 ± 0.27‰ (n = 23) prior to and during, respectively, the main Caledonian event and suggest derivation from Devonian juvenile arc sources possibly representing the initiation of the collision between Laurentia and Baltica. Similar to Pattern 1, the δ18O values associated with Pattern 3 show a progressive increase in δ18O values throughout the Proterozoic (5.00 to 9.39‰). However, Pattern 3 also exhibits a distinct juvenile fingerprint (6.13 ± 0.24‰, n = 51) during the main Caledonian event and a slight increase to 7.12 ± 1‰ (n = 7) in post-Caledonian zircons possibly suggest correlating with a post-accretion phase in which proximally sourced zircon-bearing detritus was deposited in extension-related basins marking the joining of Laurentia and Baltica.

2007 ◽  
Vol 44 (3) ◽  
pp. 297-316 ◽  
Author(s):  
JoAnne Nelson ◽  
George Gehrels

Two samples of late Paleozoic grit and Late Mississippian quartzite–chert conglomerate collected from southeastern Yukon–Tanana terrane (YTT) — a composite thrust sheet resting structurally above North American parautochthonous strata and intervening imbricate sheets of the late Paleozoic oceanic Slide Mountain terrane — yielded, respectively, 89 and 74 concordant or nearly concordant (<20% discordant) U–Pb ages on single detrital zircons. They provide constraints on the provenance of this allochthonous pericratonic terrane. Zircons in the grit range from 1770 to 2854 Ma, with a well-defined Early Proterozoic peak between 1800 and 2100 Ma. Precambrian zircons in the conglomerate also show a dominant peak between 1800 and 2100 Ma and smaller peaks between 2200 and 3200 Ma, with a few older grains, and younger grains with ages of 998, 1219, 1255, 1256, and 1417 Ma. The conglomerate also yielded three Devonian grains, with ages of 366 ± 23, 373 ± 12, and 379 ± 23 Ma. Their ages are approximately coeval with the oldest felsic to intermediate arc- and rift-related magmatism in the YTT. The age spectra from southeastern YTT units compare closely with those from Mississippian and older pericratonic units in the Coast Mountains, confirming correlations previously made on lithologic grounds. They also strongly resemble detrital zircon populations from craton-derived Paleozoic units of the northern North American autochthon. This robust U–Pb data set lends support to the idea that YTT once formed part of the outer, active margin of the North American continent, prior to Mississippian rifting and marginal ocean basin development.


2019 ◽  
Vol 56 (3) ◽  
pp. 247-266
Author(s):  
Ian Anderson ◽  
David H. Malone ◽  
John Craddock

The lower Eocene Wasatch Formation is more than 1500 m thick in the Powder River Basin of Wyoming. The Wasatch is a Laramide synorgenic deposit that consists of paludal and lacustrine mudstone, fluvial sandstone, and coal. U-Pb geochronologic data on detrital zircons were gathered for a sandstone unit in the middle part of the succession. The Wasatch was collected along Interstate 90 just west of the Powder River, which is about 50 km east of the Bighorn Mountain front. The sandstone is lenticular in geometry and consists of arkosic arenite and wacke. The detrital zircon age spectrum ranged (n=99) from 1433-2957 Ma in age, and consisted of more than 95% Archean age grains, with an age peak of about 2900 Ma. Three populations of Archean ages are evident: 2886.6±10 Ma (24%), 2906.6±8.4 Ma (56%) and 2934.1±6.6 Ma (20%; all results 2 sigma). These ages are consistent with the age of Archean rocks exposed in the northern part of the range. The sparse Proterozoic grains were likely derived from the recycling of Cambrian and Carboniferous strata. These sands were transported to the Powder River Basin through the alluvial fans adjacent to the Piney Creek thrust. Drainage continued to the north through the basin and eventually into the Ancestral Missouri River and Gulf of Mexico. The provenance of the Wasatch is distinct from coeval Tatman and Willwood strata in the Bighorn and Absaroka basins, which were derived from distal source (>500 km) areas in the Sevier Highlands of Idaho and the Laramide Beartooth and Tobacco Root uplifts. Why the Bighorn Mountains shed abundant Eocene strata only to the east and not to the west remains enigmatic, and merits further study.


2011 ◽  
Vol 48 (2) ◽  
pp. 515-541 ◽  
Author(s):  
Yvon Lemieux ◽  
Thomas Hadlari ◽  
Antonio Simonetti

U–Pb ages have been determined on detrital zircons from the Upper Devonian Imperial Formation and Upper Devonian – Lower Carboniferous Tuttle Formation of the northern Canadian Cordilleran miogeocline using laser ablation – multicollector – inductively coupled plasma – mass spectrometry. The results provide insights into mid-Paleozoic sediment dispersal in, and paleogeography of, the northern Canadian Cordillera. The Imperial Formation yielded a wide range of detrital zircon dates; one sample yielded dominant peaks at 1130, 1660, and 1860 Ma, with smaller mid-Paleozoic (∼430 Ma), Neoproterozoic, and Archean populations. The easternmost Imperial Formation sample yielded predominantly late Neoproterozoic – Cambrian zircons between 500 and 700 Ma, with lesser Mesoproterozoic and older populations. The age spectra suggest that the samples were largely derived from an extensive region of northwestern Laurentia, including the Canadian Shield, igneous and sedimentary provinces of Canada’s Arctic Islands, and possibly the northern Yukon. The presence of late Neoproterozoic – Cambrian zircon, absent from the Laurentian magmatic record, indicate that a number of grains were likely derived from an exotic source region, possibly including Baltica, Siberia, or Arctic Alaska – Chukotka. In contrast, zircon grains from the Tuttle Formation show a well-defined middle Paleoproterozoic population with dominant relative probability peaks between 1850 and 1950 Ma. Additional populations in the Tuttle Formation are mid-Paleozoic (∼430 Ma), Mesoproterozoic (1000–1600 Ma), and earlier Paleoproterozoic and Archean ages (>2000 Ma). These data lend support to the hypothesis that the influx of sediments of northerly derivation that supplied the northern miogeocline in Late Devonian time underwent an abrupt shift to a source of predominantly Laurentian affinity by the Mississippian.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jiaxuan Song ◽  
Hujun Gong ◽  
Jingli Yao ◽  
Huitao Zhao ◽  
Xiaohui Zhao ◽  
...  

The Paleozoic strata are widely distributed in the northwest of the Ordos Basin, and the provenance attributes of the basin sediments during this period are still controversial. In this paper, the detrital zircon LA-MC-ICPMS U-Pb age test was conducted on the drilling core samples of the Shanxi Formation of the Upper Paleozoic in the Otuokeqi area of the Ordos Basin, and the provenance age and the characteristic of the Shanxi formation in the Otuokeqi area in the northwest were discussed. The cathodoluminescence image shows that the detrital zircon has a clear core-edge structure, and most of the cores have clear oscillatory zonings, which suggests that they are magmatic in origin. Zircons have no oscillatory zoning structure that shows the cause of metamorphism. The age of detrital zircon is dominated by Paleoproterozoic and can be divided into four groups, which are 2500~2300 Ma, 2100~1600 Ma, 470~400 Ma, and 360~260 Ma. The first two groups are the specific manifestations of the Precambrian Fuping Movement (2.5 billion years) and the Luliang Movement (1.8 billion years) of the North China Craton. The third and fourth groups of detrital zircons mainly come from Paleozoic magmatic rocks formed by the subduction and collision of the Siberian plate and the North China plate. The ε Hf t value of zircon ranges from -18.36 to 4.33, and the age of the second-order Hf model T DM 2 ranges from 2491 to 1175 Ma. The source rock reflecting the provenance of the sediments comes from the material recycling of the Paleoproterozoic and Mesoproterozoic in the crust, combined with the Meso-Neoproterozoic detrital zircons discovered this time, indicating that the provenance area has experienced Greenwellian orogeny.


2021 ◽  
Author(s):  
Qian Wang ◽  
Guochun Zhao ◽  
Yigui Han ◽  
Jinlong Yao

&lt;p&gt;The Chinese North Tianshan (CNTS) extends E-W along the southern part of the Central Asian Orogenic Belt and has undergone complicated accretion-collision processes in the Paleozoic. This study attempts to clarify the late Paleozoic tectonism in the region by investigating the provenance of the Late Paleozoic sedimentary successions from the Bogda Mountain in the eastern CNTS by U-Pb dating and Lu-Hf isotopic analyses of detrital zircons. Detrital zircon U-Pb ages (N=519) from seven samples range from 261 &amp;#177; 4 Ma to 2827 &amp;#177; 32 Ma, with the most prominent age peak at 313 Ma. There are Precambrian detrital zircon ages (~7%) ranged from 694 to 1024 Ma. The youngest age components in each sample yielded weighted mean ages ranging from 272 &amp;#177; 9 Ma to 288 &amp;#177; 5 Ma, representing the maximum depositional ages. These and literature data indicate that some previously-assumed &amp;#8220;Carboniferous&amp;#8221; strata in the Bogda area were deposited in the Early Permian, including the Qijiaojing, Julideneng, Shaleisaierke, Yangbulake, Shamaershayi, Liushugou, Qijiagou, and Aoertu formations. The low maturity of the sandstones, zircon morphology and provenance analyses indicate a proximal sedimentation probably sourced from the East &amp;#173;Junggar Arc and the Harlik-Dananhu Arc in the CNTS. The minor Precambrian detrital zircons are interpreted as recycled materials from the older strata in the Harlik-Dananhu Arc. Zircon &amp;#603;&lt;sub&gt;Hf&lt;/sub&gt;(t) values have increased since ~408 Ma, probably reflecting a tectonic transition from regional compression to extension. This event might correspond to the opening of the Bogda intra-arc/back arc rift basin, possibly resulting from a slab rollback during the northward subduction of the North Tianshan Ocean. A decrease of zircon &amp;#603;&lt;sub&gt;Hf&lt;/sub&gt;(t) values at ~300 Ma was likely caused by the cessation of oceanic subduction and subsequent collision, which implies that the North Tianshan Ocean closed at the end of the Late Carboniferous. This research was financially supported by the Youth Program of Shaanxi Natural Science Foundation (2020JQ-589), the NSFC Projects (41730213, 42072264, 41902229, 41972237) and Hong Kong RGC GRF (17307918).&lt;/p&gt;


2019 ◽  
Vol 157 (4) ◽  
pp. 690-694 ◽  
Author(s):  
W. Franke ◽  
L.R.M. Cocks ◽  
T.H. Torsvik

AbstractAnalysis of the distribution of detrital zircon grains is one of the few parameters by which Precambrian palaeogeography may be interpreted. However, the break-up of Pangea and the subsequent dispersal of some of its fragments around the Indian Ocean demonstrate that zircon analysis alone may be misleading, since zircons indicate their original derivation and not their subsequent plate-tectonic pathways. Based on analysis of Precambrian–Ordovician zircon distributions, the presence of microcontinents and separating oceans in the north Gondwanan realm has been rejected in favour of an undivided pre-Variscan continental northwards extension of Africa to include Iberia, Armorica and neighbouring southern European terranes, based on analysis of Precambrian–Ordovician zircon distribution. However, contrasting views, indicating the presence of three peri-Gondwanan oceans with complete Wilson cycles, are reinforced here by a critical reappraisal of the significance of that Variscan area detrital zircon record together with a comparison of the evolution of the present-day Indian Ocean, indicating that Iberia, Armorica and other terranes were each separate from the main Gondwanan craton during the early Palaeozoic Era.


2017 ◽  
Vol 54 (2) ◽  
pp. 69-85 ◽  
Author(s):  
David Malone ◽  
John Craddock ◽  
Kacey Garber ◽  
Jarek Trela

The Aycross Formation is the basal unit of the Absaroka Volcanic Supergroup in the southern Absaroka Range and consists of volcanic sandstone, mudstone, breccia, tuff and conglomerate. The Aycross was deposited during the waning stages of the Laramide Orogeny and the earliest phases of volcanism in the Absaroka Range. U-Pb geo-chronology using laser ablation multicollector inductively coupled plasma mass spectrometry LA-ICP-MS was performed on detrital zircons collected from an Aycross sandstone bed at Falls Campground east of Togwotee Pass. The detrital zircon age spectrum ranged fom ca 47 to 2856 Ma. Peak ages, as indicated by the zircon age probability density plot are ca. 51, 61, and 72 Ma. Tertiary zircons were the most numerous (n = 32), accounting for 42% of the zircon ages spectrum. Of these 19 are Eocene, and 13 are Paleocene, which are unusual ages in the Wyoming-Idaho-Montana area. Mesozoic zircons (n = 21) comprise 27% of the age spectrum and range in age from 68–126 Ma; all but one being late Cretaceous in age. No Paleozoic zircons are present. Proterozoic zircons range in age from 1196–2483 Ma, and also consist of 27% of the age spectrum. The maximum depositional age of the Aycross Formation is estimated to be 50.05 +/− 0.65 Ma based on weighted mean of the eight youngest grains. The Aycross Formation detrital zircon age spectrum is distinct from that of other 49–50 Ma rocks in northwest Wyoming, which include the Hominy Peak and Wapiti Formations and Crandall Conglomerate. The Aycross must have been derived largely from distal westerly source areas, which include the late Cretaceous and Paleocene Bitteroot Lobe of the Idaho Batholith. In contrast, the middle Eocene units further to the north must have been derived from erosion of the Archean basement-cored uplift of the Laramide Foreland in southwest Montana.


Sign in / Sign up

Export Citation Format

Share Document