scholarly journals Multiproxy paleosol evidence for a rain shadow effect linked to Miocene uplift of the North Patagonian Andes

2019 ◽  
Vol 132 (7-8) ◽  
pp. 1603-1614 ◽  
Author(s):  
Joaquín Bucher ◽  
Augusto Varela ◽  
Leandro D’Elia ◽  
Andrés Bilmes ◽  
Manuel López ◽  
...  

Abstract Climate changes related to orographic barrier uplift have been in the research spotlight over recent years. Several works have focused on the interactions between climatic and tectonic processes in order to understand the development of a rain shadow. Patagonia is an ideal region in which to analyze such interactions, since a Miocene climate change, from wetter to drier conditions, has mainly been associated with Andean uplift. In this work, we analyzed a succession of stacked paleosols recorded in a Miocene North Patagonian foreland basin in order to understand how the paleosol moisture regime related to the atmospheric humidity changes caused by the uplift of the Patagonian Andes. Based on macromorphological, micromorphological, and geochemical studies, and supported by a high-resolution chronostratigraphic scheme based on U-Pb geochronology and magnetostratigraphy, the paleosols were characterized with corresponding mean annual paleoprecipitation (MAP) and mean annual temperature values. Alfisol-like paleosols were identified at the base of the foreland infill (15–14.6 Ma) with a MAP of 1229 ± 108 mm/yr. The Andisol-like paleosols recognized in the middle section of the sequence (14.6–12.75 Ma) exhibited a MAP of 1053 ± 108 mm/yr, whereas the Aridisol-like paleosols occurring in the upper section of the infill (12.75–11.5 Ma) presented a MAP of 677 ± 108 mm/yr. The determined Miocene mean annual temperatures (∼11 ± 2.1 °C) were similar to the present-day values (11 °C). Based on the complete tectonic record of the Patagonian Andes, the observed decrease in MAP was assigned to the rain shadow effect created by the uplift of the North Patagonian Andes. Results indicate that although the process started around 19 Ma, the rain shadow effect was not effectively recorded before ca. 14.6 Ma.

Author(s):  
Nadja Drabon ◽  
Donald R. Lowe

One of the major challenges in early Earth geology is the interpretation of the nature of the crust and tectonic processes due to the limited exposures of Archean rocks. This question is predominantly addressed by numerical modeling, structural geology, geochemical analyses, and petrological approaches. Here we report on the reconstruction of one of the oldest, well-preserved volcano-sedimentary sequences on Earth, the 3.28−3.22 Ga Fig Tree Group in the Barberton Greenstone Belt, South Africa, based on geochronology, provenance, and stratigraphy to provide new constraints on the nature of tectonic processes in the Archean. The Fig Tree basin was asymmetric and the onset of deposition varied across the greenstone belt. The Fig Tree Group is now preserved in east-west oriented bands of fault-bounded structural belts with those preserved in the southern parts of the greenstone belt showing an onset of deposition at 3.28 Ga, those in the center at 3.26 Ga, and those in the north at 3.24 Ga. Stratigraphically, the rocks display a general up-section trend from deeper to shallower-water deposition and/or from finer- to coarser-grained sedimentary rocks. Associated with this up-section stratigraphic trend, the sedimentary rocks show a change in provenance from more regionally similar to more locally variable, and an increase in felsic volcanic activity, especially toward the closure of Fig Tree deposition. The data is consistent with formation of the Fig Tree Group in a compressional tectonic setting by deposition in a foreland basin that experienced progressive accretion of crustal terranes onto a northward prograding fold-and-thrust belt.


Tectonics ◽  
2012 ◽  
Vol 31 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Darío Leandro Orts ◽  
Andrés Folguera ◽  
Alfonso Encinas ◽  
Miguel Ramos ◽  
Jonathan Tobal ◽  
...  

2016 ◽  
Vol 3 ◽  
pp. 229-291 ◽  
Author(s):  
Alan L. Titus ◽  
Jeffrey G. Eaton ◽  
Joseph Sertich

The Late Cretaceous succession of southern Utah was deposited in an active foreland basin circa 100 to 70 million years ago. Thick siliciclastic units represent a variety of marine, coastal, and alluvial plain environments, but are dominantly terrestrial, and also highly fossiliferous. Conditions for vertebrate fossil preservation appear to have optimized in alluvial plain settings more distant from the coast, and so in general the locus of good preservation of diverse assemblages shifts eastward through the Late Cretaceous. The Middle and Late Campanian record of the Paunsaugunt and Kaiparowits Plateau regions is especially good, exhibiting common soft tissue preservation, and comparable with that of the contemporaneous Judith River and Belly River Groups to the north. Collectively the Cenomanian through Campanian strata of southern Utah hold one of the most complete single region terrestrial vertebrate fossil records in the world.


Author(s):  
Brian Chadwick ◽  
Adam A. Garde ◽  
John Grocott ◽  
Ken J.W. McCaffrey ◽  
Mike A. Hamilton

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Chadwick, B., Garde, A. A., Grocott, J., McCaffrey, K. J., & Hamilton, M. A. (2000). Ketilidian structure and the rapakivi suite between Lindenow Fjord and Kap Farvel, South-East Greenland. Geology of Greenland Survey Bulletin, 186, 50-59. https://doi.org/10.34194/ggub.v186.5215 _______________ The southern tip of Greenland is underlain by the Palaeoproterozoic Ketilidian orogen (e.g. Chadwick & Garde 1996; Garde et al. 1998a). Field investigations in the summer of 1999 were focused on the structure of migmatites (metatexites) and garnetiferous granites (diatexites) of the Pelite Zone in the coastal region of South-East Greenland between Lindenow Fjord and Kap Farvel (Figs 1, 2). Here, we first address the tectonic evolution in the Pelite Zone in that region and its correlation with that in the Psammite Zone further north. Then, the structure and intrusive relationships of the rapakivi suite in the Pelite Zone are discussed, including particular reference to the interpretation of the controversial outcrop on Qernertoq (Figs 2, 8). Studies of the structure of the north-eastern part of the Julianehåb batholith around Qulleq were continued briefly from 1998 but are not addressed here (Fig. 1; Garde et al. 1999). The field study was keyed to an interpretation of the Ketilidian orogen as a whole, including controls of rates of thermal and tectonic processes in convergent settings. Earlier Survey field work (project SUPRASYD, 1992–1996) had as its principal target an evaluation of the economic potential of the orogen (Nielsen et al. 1993). Ensuing plate-tectonic studies were mainly funded in 1997–1998 by Danish research foundations and in 1999 by the Natural Environment Research Council, UK. The five-week programme in 1999 was seriously disrupted by bad weather, common in this part of Greenland, and our objectives were only just achieved. Telestation Prins Christian Sund was the base for our operations (Fig. 2), which were flown with a small helicopter (Hughes MD-500).


2021 ◽  
Author(s):  
Stéphane Al Reda ◽  
Barbarand Jocelyn ◽  
Gautheron Cécile ◽  
Eric Lasseur ◽  
Nicolas Loget ◽  
...  

Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Andrea Di Capua ◽  
Federica Barilaro ◽  
Gianluca Groppelli

This work critically reviews the Eocene–Oligocene source-to-sink systems accumulating volcanogenic sequences in the basins around the Alps. Through the years, these volcanogenic sequences have been correlated to the plutonic bodies along the Periadriatic Fault System, the main tectonic lineament running from West to East within the axis of the belt. Starting from the large amounts of data present in literature, for the first time we present an integrated 4D model on the evolution of the sediment pathways that once connected the magmatic sources to the basins. The magmatic systems started to develop during the Eocene in the Alps, supplying detritus to the Adriatic Foredeep. The progradation of volcanogenic sequences in the Northern Alpine Foreland Basin is subsequent and probably was favoured by the migration of the magmatic systems to the North and to the West. At around 30 Ma, the Northern Apennine Foredeep also was fed by large volcanogenic inputs, but the palinspastic reconstruction of the Adriatic Foredeep, together with stratigraphic and petrographic data, allows us to safely exclude the Alps as volcanogenic sources. Beyond the regional case, this review underlines the importance of a solid stratigraphic approach in the reconstruction of the source-to-sink system evolution of any basin.


1997 ◽  
Vol 134 (5) ◽  
pp. 607-616 ◽  
Author(s):  
G. VAN GROOTEL ◽  
J. VERNIERS ◽  
B. GEERKENS ◽  
D. LADURON ◽  
M. VERHAEREN ◽  
...  

New data implying crustal activation of Eastern Avalonia along the Anglo-Brabant fold belt are presented. Late Ordovician subduction-related magmatism in East Anglia and the Brabant Massif, coupled with accelerated subsidence in the Anglia Basin and in the Brabant Massif during Silurian time, indicate a foreland basin development. Final collision resulted in folding, cleavage development and thrusting during the mid-Lochkovian to mid-Eifelian. In the southeast of the Anglo-Brabant fold belt, Acadian deformation produced basin inversion and the regional antiformal structure of the Brabant Massif. The uplift, inferred from the sedimentology, petrography and reworked palynomorphs in the Lower Devonian of the Dinant Synclinorium is confirmed by illite crystallinity studies. The tectonic model discussed implies the presence of two subduction zones in the eastern part of Eastern Avalonia, one along the Anglo-Brabant fold belt and another under the North Sea in the prolongation of the North German–Polish Caledonides.


Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 510 ◽  
Author(s):  
Valery Vernikovsky ◽  
Georgy Shemin ◽  
Evgeny Deev ◽  
Dmitry Metelkin ◽  
Nikolay Matushkin ◽  
...  

The geodynamic development of the north–western (Arctic) margin of the Siberian craton is comprehensively analyzed for the first time based on our database as well as on the analysis of published material, from Precambrian-Paleozoic and Mesozoic folded structures to the formation of the Mesozoic-Cenozoic Yenisei-Khatanga sedimentary basin. We identify the main stages of the region’s tectonic evolution related to collision and accretion processes, mainly subduction and rifting. It is demonstrated that the prototype of the Yenisei-Khatanga basin was a wide late Paleozoic foreland basin that extended from Southern Taimyr to the Tunguska syneclise and deepened towards Taimyr. The formation of the Yenisei-Khatanga basin, as well as of the West-Siberian basin, was due to continental rifting in the Permian-Triassic. The study describes the main oil and gas generating deposits of the basin, which are mainly Jurassic and Lower Cretaceous mudstones. It is shown that the Lower Cretaceous deposits contain 90% of known hydrocarbon reserves. These are mostly stacked reservoirs with gas, gas condensate and condensate with rims. The study also presents data on oil and gas reservoirs, plays and seals in the Triassic, Jurassic and Cretaceous complexes.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
F. Cervi ◽  
M. M. Nistor

In this study, monthly time series of precipitations and temperatures from 1024 controlled and homogeneous meteorological stations located in the Emilia-Romagna region (northern Italy) are processed in order to assess potential climate changes that occurred during the period 1961–2015. Normal period as baseline between 1961 and 1990 (1990s) and recent period between 1991 and 2015 (2010s) were adopted in this study to analyse the possible effect of climate change on water availability during long-term period. Based on monthly and annual temperature (TT), precipitation (PP), and potential (ET0), the actual evapotranspiration (AET0) and water availability (WA) were computed at high spatial resolution. Between the two analysed periods, during the 2010s, it was found an increase in the maximum mean annual temperature by 1.08°C while the maximum mean annual precipitation saw a slight decrease (from 2222 mm to 2086 mm). The precipitation decrease is more intense in the South and West sectors of area (8%) and mainly depends on negative changes taking place during the winter and the beginning of spring (from December to March). The maximum mean annual ET0 and AET0 reached values of 663 mm and 565 mm during the 1990s, while during the 2010s, the found values were 668 mm and 572 mm, respectively. Because of the decrease in precipitation and increase in the ET0 and AET0, the WA (the proportion of precipitation that is available at the soil surface for subsequent infiltration and runoff processes) shows a reduction (about 10–20%) in the whole region, with exception of the North-East part of the Emilia-Romagna region. The decrease in the mean annual water availability induces severe issues concerning the water resources management across the whole Emilia-Romagna region.


Sign in / Sign up

Export Citation Format

Share Document