A Late Miocene magmatic flare-up in West Sulawesi triggered by Banda slab rollback

2020 ◽  
Vol 132 (11-12) ◽  
pp. 2517-2528
Author(s):  
Xiaoran Zhang ◽  
Chia-Yu Tien ◽  
Sun-Lin Chung ◽  
Adi Maulana ◽  
Musri Mawaleda ◽  
...  

Abstract Cenozoic magmatism occurs throughout West Sulawesi, Indonesia, yet its detailed evolution remains enigmatic due mainly to the scarcity of precise dating. Here, we report new whole-rock geochemical and zircon U-Pb-Hf isotopic data of plutonic/volcanic rocks and river sediments from West Sulawesi to constrain the petrogenesis and magmatic tempo. The magmatic rocks are intermediate to felsic (SiO2 = 58.1–68.0 wt%), high-K calc-alkaline to shoshonitic (K2O = 2.2–6.0 wt%), metaluminous to weakly peraluminous, and I-type in composition. Trace element concentrations and ratios (e.g., Nb/U = 1.7–4.3 and Ti/Zr < 28), along with negative zircon εHf(t) values (–17.0 to –0.4) and old crustal model ages (TDMC = 2.1–1.1 Ga), indicate a dominant magma source region from the underlying continental crystalline basement. U-Pb dating on zircons from ten magmatic rocks yielded weighted mean 206Pb/238U ages of 7.2–6.1 Ma, best representing the crystallization ages of host magmas, further consistent with the prominent age peaks (7.3–6.3 Ma) defined by detrital zircons from four sedimentary samples. Our new data, combined with available results, allow the identification of a noticeable climax of magmatism (flare-up) at ca. 7–6 Ma, forming a continuous magmatic belt throughout West Sulawesi. Given the absence of contemporaneous subduction and the coincidence of incipient opening of the South Banda Basin during ca. 7.15–6.5 Ma, the Late Miocene magmatic flare-up in West Sulawesi and coeval regional extension in eastern Indonesia are attributed to a resumed episode of Banda slab rollback.

2021 ◽  
Author(s):  
Hai Zhou ◽  
Guochun Zhao ◽  
Donghai Zhang

<p>Oceanic subduction and its last underthrusted part can both triggers arc-like magmatism. As the existence of multi-subduction zones in the Central Asian Orogenic Belt, controversy still surrounds on when and especially how the subduction of the (Paleo-Asian Ocean) PAO terminated. We present geochronological, geochemical, and Lu-Hf isotopic data for a suite of basalt-andesites, dacite-rhyolites and later trachyandesite-mugearitic dykes from the Khan-Bogd area in the Gobi Tianshan Zone (GTZ) of the southern Mongolia. U-Pb dating of zircons indicate the basalt-andesites and dacite-rhyolites were formed at ~334-338 Ma, and the dykes at ~300 Ma. These Early Carboniferous volcanic rocks display high U/Th, Ba/Th, low La/Sm and variable Zr/Nb ratios, implying the involvement of subduction fluids or sediment melt. They display arc geochemical features such as calc-alkaline and metaluminous nature and positive Ba and U and negative Nb, Ta and Ti anomalies. Moreover, their continental geochemical signals (e.g. positive Pb, K anomalies) and some old captured zircons implying a continental arc setting. Comparatively, the ~300 Ma dykes are characterized by high alkaline contents, which are common for coeval (~320-290 Ma) and widespread post-subductional granites there. Given a mainly crust-derived magma source for those granites, these dykes likely reflect a mantle disturbance due to: (1) their relative low SiO<sub>2 </sub>(51.71-55.85 wt. %) and high Mg# (40.3-67.3) values, and (2) positive zircon Ɛ<sub>Hf</sub>(t) (most > 12). Considering a slab rollback model during the Carboniferous and Triassic, the mantle disturbance was possibly induced by the oceanic slab breakoff. Combined with previous work, this ~320-290 Ma slab breakoff-induced extension marks the closure of a wide secondary ocean (North Tianshan-Hegenshan ocean) north of the main ocean basin of the PAO. This research was financially supported by NSFC Projects (41730213, 42072264, 41902229, 41972237) and Hong Kong RGC GRF (17307918).</p>


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 200 ◽  
Author(s):  
Zheng-Zheng Feng ◽  
Zhong-Jie Bai ◽  
Hong Zhong ◽  
Wei-Guang Zhu ◽  
Shi-Ji Zheng

Volcanic rocks, as the extrusive counterparts of the mineralized intrusions, can provide important information on the magma source, petrogenesis, and metallogenic conditions of the coeval porphyry-epithermal system. Shanghang Basin volcanic rocks are spatially and temporally related to a series of adjacent porphyry-epithermal Cu–Au deposits, and they can be used as a window to study the related deposits. Two laser-ablation–inductively coupled plasma–mass spectrometry zircon U–Pb analyses of the volcanic rocks yield weighted mean ages of ~105 Ma, identical to the age of the coeval porphyry-epithermal mineralization. Rocks have SiO2 contents of 55.4 to 74.8 wt % and belong to the high-K to shoshonitic series, characterized by strong differentiation of light rare-earth elements (REEs) relative to heavy REEs (mean LaN/YbN = 16.88); enrichment in light REEs, Rb, Th, and U; and depletion in Nb, Ta, Zr, Hf, and Ti. The volcanic rocks display (87Sr/86Sr)i values of 0.709341 to 0.711610, εNd(t) values of −6.9 to −3.3 εHf(t) values of −3.95 to −0.30, and δ18O values of 6.07‰–6.79‰, suggesting that the parental magmas were derived from a mantle source enriched by subduction-related progress. SiO2 content shows a strong negative correlation with the contents of some major and trace elements, indicating that fractional crystallization played an important role in the generation of these rocks. A binary mixing model of Hf–O isotopes gives an estimated degree of crustal contamination of 30%. In addition, magnetite crystallized early, and the samples showed high zircon EuN/EuN* values (0.48–0.68), indicating that the parental magma had a high oxygen fugacity. The inferred suppression of plagioclase crystallization and increasing hornblende crystallization during magma evolution suggest that the magma was water rich. The high-water content and high oxygen fugacity of the magma promoted the dissolving of sulfides containing Cu and Au in the source area and contributed to the migration of ore-forming elements.


2008 ◽  
Vol 145 (4) ◽  
pp. 463-474 ◽  
Author(s):  
SHEN LIU ◽  
RUI-ZHONG HU ◽  
CAI-XIA FENG ◽  
HAI-BO ZOU ◽  
CAI LI ◽  
...  

AbstractGeochemical and Sr–Nd–Pb isotopic data are presented for volcanic rocks from Zougouyouchaco (30.5 Ma) and Dogai Coring (39.7 Ma) of the southern and middle Qiangtang block in northern Tibet. The volcanic rocks are high-K calc-alkaline trachyandesites and dacites, with SiO2 contents ranging from 58.5 to 67.1 wt % The rocks are enriched in light REE (LREE) and contain high Sr (649 to 986 ppm) and relatively low Yb (0.8 to 1.2 ppm) and Y (9.5 to 16.6 ppm) contents, resulting in high La/Yb (29–58) and Sr/Y (43–92) ratios, as well as relatively high MgO contents and Mg no., similar to the compositions of adakites formed by slab melting in subduction zones. However, the adakitic rocks in the Qiangtang block are characterized by relatively low εNd(t) values (−3.8 to −5.0) and highly radiogenic Sr ((87Sr/86Sr)i=0.706–0.708), which are inconsistent with an origin by slab melting. The geochemistry and tectonics indicate that the adakitic volcanic rocks were most likely derived from partial melting of delaminated lower continental crust. As the pristine adakitic melts rose, they interacted with the surrounding mantle peridotite, elevating their MgO values and Mg numbers.


Author(s):  
J.Q. Lin ◽  
F. Ding ◽  
C.H. Chen ◽  
T. Shen

Abstract ––The research team studied the petrology, whole-rock geochemistry, zircon U–Pb age, and stable isotopic characteristics of the Rongguo Longba and Garongcuo granites of the Nuocang area to better understand the impact of Neo-Tethys ocean subduction and In-dia–Eurasia continental collision on Paleocene tectonomagmatic processes along the southern margin of the Gangdese Belt. The Rongguo Longba granite and Garongcuo granite porphyry formed at 61.86 and 62.17 Ma, respectively. The Nuocang granitoids are characterized by (1) high SiO2, NaO2, and Al2O3 contents and low FeOT, MgO, and TiO2 contents; (2) LREE and LILE enrichment and HREE and HFSE (Nb, P, and Ti) depletion; and (3) obvious negative Eu anomalies. These features indicate that the Nuocang granites are of the high-K calc-alkaline and peraluminous granite types. Furthermore, their zircon Hf isotope characteristics suggest that the magma source region has an ancient crystalline basement. The basaltic andesitic crystal tuff is the product of garnet–peridotite partial melting and crust contamination from rising magma emplacement.


Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 754 ◽  
Author(s):  
De-Liang Liu ◽  
Min Shi ◽  
Shao-Yong Jiang

The subduction and close of the Mesozoic Bangong–Nujiang Ocean (BNO) led to a collision of the Lhasa and Qiangtang blocks, which formed the backbone of the Tibetan Plateau (the largest and highest plateau on Earth). However, the detailed subduction processes (in particular, the oceanic subduction processes) within the BNO are still not clear. Here, we focus on the plutonic complex of the oceanic arc in the Bangong–Nujiang suture (BNS) and report field observations on zircon U–Pb ages, Lu–Hf isotopes, and the Al-in-hornblende barometry of quartz diorites from the Lameila pluton in western Tibet. Zircon from the quartz diorites yielded a LA-ICP-MS U–Pb age of 164 Ma. The zircon showed very positive εHf(t) values from 10.5 to 13.9, suggesting the Lameila pluton was likely sourced from the depleted-mantle wedge, which is in contrast with contemporary (164–161 Ma) volcanic rocks in the region that had negative εHf(t) values of −7.4 to −16.2 and a magma source from partial melting of subducted sediments. The Lameila pluton showed a temperature-corrected Al-in-hornblende pressure of 3.9 ± 0.8 kbar, corresponding to an emplacement depth of 13 ± 3 km. Therefore, the thickness of the Jurassic oceanic arc crust must have doubled since the initial growth of the oceanic arc on the BNO crust, with a crustal thickness of 6.5 km during the Middle Jurassic. In combination with previous works on volcanic rocks, this study further supports a two-subduction zone model in association with the BNO during the Middle Jurassic, namely, a north-dipping BNO–Qiangtang subduction zone and an oceanic subduction zone within the BNO. The latter oceanic subduction zone produced the depleted-mantle-derived Lameila pluton and the subducted sediment-derived volcanic rocks in the fore arc.


2021 ◽  
pp. jgs2021-079
Author(s):  
Xin Qian ◽  
Shen Ma ◽  
Xianghong Lu ◽  
Sainan Wu ◽  
Mongkol Udchachon ◽  
...  

Volcanic rocks in the Chanthaburi zone are rarely reported and important for investigating the tectonic evolution of Paleotethyan Ocean in SE Thailand. Four rhyolitic samples from the Ko Chang Island yield zircon ages of 254–258 Ma, confirming the presence of Late Permian volcanic rocks in SE Thailand. These rocks consist of Group 1 rhyolites and Group 2 rhyolitic ignimbrites and have high K2O contents of 4.92–7.10 wt.% and A/CNK values of 1.10–1.69. They are enriched in LREEs, Rb, Th, U, Zr and Y, and show negative anomalies of Ba, Sr, Nb, Ta and Ti with obvious Eu anomalies. Their whole-rock εNd (t) values range from −1.7 to −3.1. Zircon in-situ εHf (t) and δ18O values range from 0.0 to +5.6 and 8.2‰ to 9.6‰, respectively. They belong to peraluminous, ultrapotassic A-type rhyolites, and were derived from partial melting of a mixed source of Mesoproterozoic metasedimentary rocks with a component of juvenile mafic crust. These ultrapotassic rhyolites formed in a continental rift setting in response to the rollback of subducted Paleotethyan oceanic slab beneath the Indochina Block. Combining previous geological observations, we propose that there are some sporadically distributed continental rift basins along the Eastern Paleotethyan domain during the Permian.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5635390


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1248
Author(s):  
Youxin Chen ◽  
Shengqiang Zhu ◽  
Xianzhi Pei ◽  
Lei He ◽  
Jun Zhao ◽  
...  

The origin and tectonic implication of Early–Middle Devonian magmatism in the northern margin of YB (Yili Block) remain enigmatic and are important for understanding Late Paleozoic evolution of the Junggar Ocean and southern Kazakhstan Orocline. Here, we present the systematic study of whole-rock geochemical and Sr–Nd isotope features as well as U–Pb–Hf isotope characteristics of zircon crystals for newly identified Early Devonian volcanic rocks from the northern margin of YB. The volcanic rocks are composed of rhyolite, rhyolite porphyry, and rhyolitic tuff. Zircon U-Pb age dating indicates they were formed at ca. 407~418 Ma. They have high SiO2 (70.16–77.52 wt.%) and alkali (5.10–9.56 wt.%) contents, and high Zr + Nb + Ce + Y content (~456 ppm), indicative of A-type magma. Their relative depletion of Nb, Ta, and Ti, and enrichment of LILEs show arc affinity. Their low initial 87Sr/86Sr ratios (0.699708–0.709822) and negative εNd(t) values (−1.8 to −4.0) indicate a mainly continental magma source and their positive εHf(t)values (+6.13 to +14.81) are possibly due to the garnet effect. All these above reveal that volcanic rocks were generated by re-melting of lower crust under a high temperature condition, which was induced by long-lived heat accumulation with no or minimal basalt flux. Combined with active continental margin inference evidenced by contemporaneous sedimentary rocks, we attribute the generation of the volcanic rocks to a continental arc setting related to the southward subduction of Junggar oceanic crust. Thus, we infer the Early–Middle Devonian arc-related magmatic rocks in the northern margin of YB are eastward counterparts of the southern limb of the Devonian Volcanic Belt, which resulted from a relatively steady-state southward subduction.


2020 ◽  
Vol 132 (9-10) ◽  
pp. 2119-2134 ◽  
Author(s):  
Dapeng Li ◽  
Yuelong Chen ◽  
Guoliang Xue ◽  
Huan Kang ◽  
Yang Yu ◽  
...  

Abstract Fundamental geodynamic changes from vertical tectonics to lateral subduction occurred during the Neoarchean, yet detailed processes related to this transition and initiation of modern-style subduction remain enigmatic. Successive Neoarchean magmatic rocks including both plume-derived komatiites and subduction-related supracrustal and intrusive rocks appeared and preserved key information on the late Archean geodynamic changes in the Western Shandong Province granite-greenstone belt (WSP), North China Craton. In this study, whole-rock geochemical and Sm-Nd isotopic data and zircon U-Pb and Lu-Hf isotopes are reported for early Neoarchean supracrustal and intrusive rocks for the WSP. Temporally, the early Neoarchean magmatic movements in the WSP can be subdivided into two stages, including the early stage (2.77–2.69 Ga) and the late stage (2.69–2.60 Ga). Spatially, from southwest to northeast, intrusive rocks with similar ages define three belts (A, B, and C). Early stage tholeiitic and enriched meta-basalts were plume-related, representing oceanic crust opening from a pre-early Neoarchean continent. Slab subduction at least initiated at ca. 2.74 Ga and generated various Neoarchean tonalite-trondhjemite-granodiorites, quartz diorites, and arc-related volcanic rocks and mafic intrusions. Episodic emergence of meta-basaltic rocks and/or mafic intrusions with depleted εHf(t) values and low (La/Yb)N ratios indicates frequent slab break-offs during ca. 2.70–2.68 Ga, 2.66–2.64 Ga, and 2.62–2.60 Ga due to a relatively hotter mantle and regional heating by mantle plume. Secular geochemical changes of mafic and felsic rocks in this study outline roles of slab subduction in contributions of cooling the mantle, secular mantle refertilization, and crustal growth.


2021 ◽  
Vol 1 (24) ◽  
Author(s):  
Zehra Salkić ◽  
Elvir Babajić ◽  
Boško Lugović

Magmatic rocks of post-Late Eocene magmatic formation are widespread in the Sava segment of Sava- Vardar suture zone and adjoin areas. The rocks formed as a response to transpressional-transtensional tectonic activity preceded by the Cretaceous-Eocene compression of the Internal Dinarides and Tisia Unit as fragments of Eurasian continental lithosphere. Central Bosnia Tertiary volcanic rocks (CBTVR), erupted as dacites in Lower Oligocene, are peculiar rocks of this formation either by their location (southernmost distal outcrops) or geological setting (extrusive within the melange of the Internal Dinaride Ophiolite Belt). Major element composition of the CBTVR reveals high-K calc-alkaline geochemical affinity whereas trace element discriminate the rocks as shoshonitic. The rocks are LILE-enriched and show negative Ta- Nb, P and Ti anomalies, and positive Pb anomalies typical of subduction related volcanic rocks. Chondrite-normalized REE patterns exhibit significant LREE/HREE enrichment [(La/Yb)cn = 21.4 - 33.4]. Geochemical affinity of the CBTVR combined with tectonic position of extrusions suggests derivation of the melts from the subcontinental mantle which had inherited strong orogenic signature during an ancient subduction.


1985 ◽  
Vol 22 (9) ◽  
pp. 1257-1261 ◽  
Author(s):  
David A. Clague ◽  
Charles S. Frani El ◽  
Jacqueline S. Eaby

The Thetford Mines ophiolite in southern Quebec was obducted in Early Ordovician time during the closing of the proto-Atlantic. The tectonized peridotite lower unit of the ophiolite is intruded by felsic dikes and pods including isolated lenses of massive rodingite, small bodies of strongly deformed diorite, and younger, less deformed quartz monzonite. These intrusions are found only near the base of the ophiolite, do not intrude the surrounding country rock, and are rootless; for these reasons they are considered to have been emplaced in the ophiolite before it reached its present location.The younger group of intrusions consists of biotite–muscovite quartz monzonite and leuco–quartz monzonite. Analyzed samples have high K2O contents, high (K2O × 100)/(Na2O + K2O) ratios, and high initial strontium ratios (0.7171–0.7179), indicating that the magma source region was continental and that these felsic rocks formed by partial melting of continental sediments. Whole-rock and mineral isochron ages suggest that the felsic intrusions are about 456 ± 4 Ma old and that they were metamorphosed about 418 ± 7 Ma ago.The detachment of the ophiolite occurred about 491 ± 3 Ma ago and is recorded by the age of the metamorphic aureole beneath the ophiolite. The felsic dikes were intruded some 35 Ma years later during the Taconic Orogeny. The lengthy time between detachment and final nappe emplacement recorded by the felsic dikes may be a requirement for the formation of abundant asbestiform chrysotile.


Sign in / Sign up

Export Citation Format

Share Document