Curved slickenlines preserve direction of rupture propagation

Geology ◽  
2019 ◽  
Vol 47 (9) ◽  
pp. 838-842
Author(s):  
Jesse Kearse ◽  
Yoshihiro Kaneko ◽  
Tim Little ◽  
Russ Van Dissen

Abstract Slip-parallel grooves (striations) on fault surfaces are considered a robust indicator of fault slip direction, yet their potential for recording aspects of earthquake rupture dynamics has received little attention. During the 2016 Kaikōura earthquake (South Island, New Zealand), >10 m of dextral strike-slip on the steeply dipping Kekerengu fault exhumed >200 m2 of fresh fault exposure (free faces) where it crossed bedrock canyons. Inscribed upon these surfaces, we observed individual striae up to 6 m long, all of which had formed during the earthquake. These were typically curved. Using simulations of spontaneous dynamic rupture on a vertical strike-slip fault, we reproduce the curved morphology of striae on the Kekerengu fault. Assuming strike-slip pre-stress, our models demonstrate that vertical tractions induced by slip in the so-called cohesive zone result in transient changes in slip direction. We show that slip-path convexity is sensitive to the direction of rupture propagation. To match the convexity of striae formed in 2016 requires the rupture to have propagated in a northeast direction, a prediction that matches the known rupture direction of the Kaikōura earthquake. Our study highlights the potential for fault striae to record aspects of rupture dynamics, including the rupture direction of paleo strike-slip earthquakes.

2021 ◽  
Vol 118 (19) ◽  
pp. e2025632118
Author(s):  
Ahmed Elbanna ◽  
Mohamed Abdelmeguid ◽  
Xiao Ma ◽  
Faisal Amlani ◽  
Harsha S. Bhat ◽  
...  

Tsunami generation from earthquake-induced seafloor deformations has long been recognized as a major hazard to coastal areas. Strike-slip faulting has generally been considered insufficient for triggering large tsunamis, except through the generation of submarine landslides. Herein, we demonstrate that ground motions due to strike-slip earthquakes can contribute to the generation of large tsunamis (>1 m), under rather generic conditions. To this end, we developed a computational framework that integrates models for earthquake rupture dynamics with models of tsunami generation and propagation. The three-dimensional time-dependent vertical and horizontal ground motions from spontaneous dynamic rupture models are used to drive boundary motions in the tsunami model. Our results suggest that supershear ruptures propagating along strike-slip faults, traversing narrow and shallow bays, are prime candidates for tsunami generation. We show that dynamic focusing and the large horizontal displacements, characteristic of strike-slip earthquakes on long faults, are critical drivers for the tsunami hazard. These findings point to intrinsic mechanisms for sizable tsunami generation by strike-slip faulting, which do not require complex seismic sources, landslides, or complicated bathymetry. Furthermore, our model identifies three distinct phases in the tsunamic motion, an instantaneous dynamic phase, a lagging coseismic phase, and a postseismic phase, each of which may affect coastal areas differently. We conclude that near-source tsunami hazards and risk from strike-slip faulting need to be re-evaluated.


2021 ◽  
Author(s):  
◽  
Jesse Kearse

<p>During the 2016, Mw 7.8 Kaikōura earthquake the Kekerengu fault ruptured the ground surface producing a maximum of ~12 m of net displacement (dextral-slip with minor reverse- slip), one of the largest five co-seismic surface rupture displacements so far observed globally. This thesis presents the first combined onshore to offshore dataset of co-seismic ground-surface and vertical seabed displacements along a near-continuous ~83 km long strike-slip dominated earthquake surface rupture of large slip magnitude. Onshore on the Kekerengu, Jordan Thrust, Upper Kowhai, and Manakau faults, we measured the displacement of 117 cultural and natural markers in the field and using airborne LiDAR data. Offshore on the dextral-reverse Needles fault, multibeam bathymetric and high-resolution seismic reflection data image a throw of the seabed of up to 3.5±0.2 m. Mean net slip on the total ~83 km rupture was 5.5±1 m, this is an unusually large mean slip for the rupture length compared to global strike-slip surface ruptures. Surveyed linear features that extend across the entire surface rupture zone show that it varies in width from 13 to 122 m. These cultural features also reveal the across-strike distribution of lateral displacement, 80% of which is, on average, concentrated within the central 43% of the rupture zone. Combining the near-field measurements of fault offset with published, far-field InSAR, continuous GPS, and coastal deformation data, suggests partitioning of oblique plate convergence, with a significant portion of co-seismic contractional deformation (and uplift) being accommodated off-fault in the hanging-wall crust to the northwest of the main rupturing faults.  This thesis also documents in detail the onshore extent of surface fault rupture on the Kekerengu, Jordan Thrust, Upper Kowhai and Manakau faults. I present large-scale maps (up to 1:3,000) and documentary field photographs of this 53 km-long onshore surface rupture zone utilizing field data, post-earthquake LiDAR-derived Digital Elevation Models (DEMs), and post-earthquake ortho-rectified aerial photography. Ground deformation data is most detailed near the Marlborough coast where the 2016 rupture trace is well-exposed on agricultural grassland on the Kekerengu fault. In the southwest, where surface fault rupture traversed the alpine slopes of the Seaward Kaikoura ranges, fault mapping relied heavily on the LiDAR-derived DEMs.   At 24 sites along the Kekerengu fault, I document co-seismic wear striae that were formed during the earthquake and were preserved on free face fault exposures. Nearly all of these striae were distinctly curved along their length, demonstrating that the direction of near-surface fault slip changed with time during rupture of the Kekerengu fault. Co-seismic displacement on the Kekerengu fault initiated as oblique-dextral (mainly dextral-reverse), and subsequently rotated to become nearly-pure dextral slip. These slip trajectories agree with directions of net displacements derived from offset linear features at nearby sites. Temporal rotation of the slip direction may suggest a state of low shear stress on the Kekerengu fault before the earthquake, and a near-complete reduction in stress during the earthquake, as has been inferred for other historic earthquakes that show evidence for changing slip direction with time.</p>


2020 ◽  
Vol 110 (3) ◽  
pp. 1011-1024 ◽  
Author(s):  
Hui Wang ◽  
Mian Liu ◽  
Benchun Duan ◽  
Jianling Cao

ABSTRACT Large earthquakes on strike-slip faults often rupture multiple fault segments by jumping over stepovers. Previous studies, based on field observations or numerical modeling with a homogeneous initial stress field, have suggested that stepovers more than ∼5  km wide would stop the propagation of rupture, but many exceptions have been observed in recent years. Here, we integrate a dynamic rupture model with a long-term fault stress model to explore the effects of background stress perturbation on rupture propagation across stepovers along strike-slip faults. Our long-term fault models simulate steady-state stress perturbation around stepovers. Considering such stress perturbation in dynamic rupture models leads to prediction of larger distance a dynamic rupture can jump over stepovers: over 15 km for a releasing stepover or 7 km for a restraining stepover, comparing with the 5 km limit in models with the same fault geometry and frictional property but assuming a homogeneous initial stress. The effect of steady-state stress perturbations is stronger in an overlapping stepover than in an underlapping stepover. The maximum jumping distance can reach 20 km in an overlapping releasing stepover with low-static frictional coefficients. These results are useful for estimating the maximum length of potential fault ruptures and assessing seismic hazard.


2021 ◽  
Author(s):  
◽  
Philippa Morris

<p>The Mw 7.8 Kaikōura earthquake of November 14th 2016 provided unprecedented opportunities to understand how the ground deforms during large magnitude strike-slip earthquakes. The re-excavation and extension of both halves of a displaced paleoseismic trench following this earthquake provided an opportunity to test, refine, and extend back in time the known late Holocene chronology of surface rupturing earthquakes on the Kekerengu Fault. As part of this thesis, 28 organic-bearing samples were collected from a suite of new paleoseismic trenches. Six of these samples were added to the preferred age model from Little et al. (2018); this updated age model is now based on 16 total samples. Including the 2016 earthquake, six surface rupturing earthquakes since ~2000 cal. B.P. are now identified and dated on the Kekerengu Fault. Based on the latest five events (E0 to E4), this analysis yields an updated mean recurrence interval estimate for the Kekerengu Fault of 375 ± 32 yrs (1σ) since ~1650 cal. B.P. The older, sixth event (E5) is not included in the preferred model, as it may not have directly preceded E4; however, if this additional event is incorporated into an alternative age model that embraces all six identified events, the mean recurrence interval estimate (considered a maximum) calculated is 433 ± 22 yrs (1σ) since ~2000 cal. B.P.   Comparison of structures on an identical trench wall logged both before and after the 2016 earthquake, and analysis of pre- and post-earthquake high resolution imagery and Digital Surface Models (DSMs), has allowed the quantification of where and how ~9 m of dextral-oblique slip was accommodated at this site during the earthquake. In addition to this, I analyse the coseismic structure of the adjoining segment of the 2016 ground rupture using detailed post-earthquake aerial orthophotography, to further investigate how geological surface structures (bulged-up moletrack structures) accommodated slip in the rupture zone. These combined analyses allowed me to identify two primary deformation mechanisms that accommodated the large coseismic slip of this earthquake, and the incremental effect of that slip on the structural geology of the rupture zone. These processes include: a) discrete slip along strike-slip faults that bound a narrow, highly deformed inner rupture zone; and b), distributed deformation within this inner rupture zone. The latter includes coseismic clockwise rotation of cohesive rafts of turf, soil and near-surface clay-rich sediment. During this process, these “turf rafts” detach from the underlying soil at a mean depth of ~0.7 m, shorten by ~2.5 m (in addition to shortening introduced by any local contractional heave), bulge upwards by < 1 m, and rotate clockwise by ~19° - while also separating from one another along fissures bounded by former (now rotated) synthetic Riedel faults. This rotational deformation accommodated ~3 m of dextral strike-slip (of a total of ~9 m), after which this rotation apparently ceased, regardless of the total slip or the local kinematics (degree of transpression) at any site. The remaining slip was transferred onto later forming, throughgoing faults as discrete displacement. Analysis of the morphology and amplitude of these moletracks suggests that an increase in the degree of transpression (value of contractional heave) at a site increases the magnitude of shortening and the finite longitudinal strain absorbed by the rotated turf rafts, but does not necessarily contribute to an increase in height (generally 0.33-0.53 m on all parts of the fault). Rather, the comparison of these moletracks with those described by other authors suggests that a more controlling factor on their height is the clay content and cohesion of material deformed into the moletracks.  Finally, comparison of the before and after cross-sections of the displaced paleoseismic trench has provided, for the first time, insight into how large magnitude strike-slip ruptures are expressed in the fault-orthogonal view typical of paleoseismic trenches. Although this rupture involved ~9 m of dextral strike-slip, the cross-sectional view of the re-excavated trenches was dominated by the much lesser component of fault-perpendicular contractional heave (~1.3 m) that occurred in 2016, which did not occur in previous paleoearthquakes at the same site (these were, by contrast, transtensional). This heave was expressed as up to ~2 m of fault-transverse shortening in the inner rupture zone of the trenches, while the ~9 m of strike-slip only created cm-scale offsets across faults. Previous earthquakes at the site were expressed as cm-dm scale, mostly normal dip-separations of sub-horizontal stratigraphic units across faults, suggesting that a change in local kinematics (of ~8°) must have occurred in 2016. Such a small kinematic change may drastically impact the overall ground expression of strike-slip earthquakes - producing also complicated structures including overprinting fault strands in the rupture zone (to a few metres depth). This information poses challenges for structural geologists and paleoseismologists when interpreting (the significance of) structures in future trench walls.</p>


2021 ◽  
Author(s):  
◽  
Philippa Morris

<p>The Mw 7.8 Kaikōura earthquake of November 14th 2016 provided unprecedented opportunities to understand how the ground deforms during large magnitude strike-slip earthquakes. The re-excavation and extension of both halves of a displaced paleoseismic trench following this earthquake provided an opportunity to test, refine, and extend back in time the known late Holocene chronology of surface rupturing earthquakes on the Kekerengu Fault. As part of this thesis, 28 organic-bearing samples were collected from a suite of new paleoseismic trenches. Six of these samples were added to the preferred age model from Little et al. (2018); this updated age model is now based on 16 total samples. Including the 2016 earthquake, six surface rupturing earthquakes since ~2000 cal. B.P. are now identified and dated on the Kekerengu Fault. Based on the latest five events (E0 to E4), this analysis yields an updated mean recurrence interval estimate for the Kekerengu Fault of 375 ± 32 yrs (1σ) since ~1650 cal. B.P. The older, sixth event (E5) is not included in the preferred model, as it may not have directly preceded E4; however, if this additional event is incorporated into an alternative age model that embraces all six identified events, the mean recurrence interval estimate (considered a maximum) calculated is 433 ± 22 yrs (1σ) since ~2000 cal. B.P.   Comparison of structures on an identical trench wall logged both before and after the 2016 earthquake, and analysis of pre- and post-earthquake high resolution imagery and Digital Surface Models (DSMs), has allowed the quantification of where and how ~9 m of dextral-oblique slip was accommodated at this site during the earthquake. In addition to this, I analyse the coseismic structure of the adjoining segment of the 2016 ground rupture using detailed post-earthquake aerial orthophotography, to further investigate how geological surface structures (bulged-up moletrack structures) accommodated slip in the rupture zone. These combined analyses allowed me to identify two primary deformation mechanisms that accommodated the large coseismic slip of this earthquake, and the incremental effect of that slip on the structural geology of the rupture zone. These processes include: a) discrete slip along strike-slip faults that bound a narrow, highly deformed inner rupture zone; and b), distributed deformation within this inner rupture zone. The latter includes coseismic clockwise rotation of cohesive rafts of turf, soil and near-surface clay-rich sediment. During this process, these “turf rafts” detach from the underlying soil at a mean depth of ~0.7 m, shorten by ~2.5 m (in addition to shortening introduced by any local contractional heave), bulge upwards by < 1 m, and rotate clockwise by ~19° - while also separating from one another along fissures bounded by former (now rotated) synthetic Riedel faults. This rotational deformation accommodated ~3 m of dextral strike-slip (of a total of ~9 m), after which this rotation apparently ceased, regardless of the total slip or the local kinematics (degree of transpression) at any site. The remaining slip was transferred onto later forming, throughgoing faults as discrete displacement. Analysis of the morphology and amplitude of these moletracks suggests that an increase in the degree of transpression (value of contractional heave) at a site increases the magnitude of shortening and the finite longitudinal strain absorbed by the rotated turf rafts, but does not necessarily contribute to an increase in height (generally 0.33-0.53 m on all parts of the fault). Rather, the comparison of these moletracks with those described by other authors suggests that a more controlling factor on their height is the clay content and cohesion of material deformed into the moletracks.  Finally, comparison of the before and after cross-sections of the displaced paleoseismic trench has provided, for the first time, insight into how large magnitude strike-slip ruptures are expressed in the fault-orthogonal view typical of paleoseismic trenches. Although this rupture involved ~9 m of dextral strike-slip, the cross-sectional view of the re-excavated trenches was dominated by the much lesser component of fault-perpendicular contractional heave (~1.3 m) that occurred in 2016, which did not occur in previous paleoearthquakes at the same site (these were, by contrast, transtensional). This heave was expressed as up to ~2 m of fault-transverse shortening in the inner rupture zone of the trenches, while the ~9 m of strike-slip only created cm-scale offsets across faults. Previous earthquakes at the site were expressed as cm-dm scale, mostly normal dip-separations of sub-horizontal stratigraphic units across faults, suggesting that a change in local kinematics (of ~8°) must have occurred in 2016. Such a small kinematic change may drastically impact the overall ground expression of strike-slip earthquakes - producing also complicated structures including overprinting fault strands in the rupture zone (to a few metres depth). This information poses challenges for structural geologists and paleoseismologists when interpreting (the significance of) structures in future trench walls.</p>


2021 ◽  
Author(s):  
◽  
Jesse Kearse

<p>During the 2016, Mw 7.8 Kaikōura earthquake the Kekerengu fault ruptured the ground surface producing a maximum of ~12 m of net displacement (dextral-slip with minor reverse- slip), one of the largest five co-seismic surface rupture displacements so far observed globally. This thesis presents the first combined onshore to offshore dataset of co-seismic ground-surface and vertical seabed displacements along a near-continuous ~83 km long strike-slip dominated earthquake surface rupture of large slip magnitude. Onshore on the Kekerengu, Jordan Thrust, Upper Kowhai, and Manakau faults, we measured the displacement of 117 cultural and natural markers in the field and using airborne LiDAR data. Offshore on the dextral-reverse Needles fault, multibeam bathymetric and high-resolution seismic reflection data image a throw of the seabed of up to 3.5±0.2 m. Mean net slip on the total ~83 km rupture was 5.5±1 m, this is an unusually large mean slip for the rupture length compared to global strike-slip surface ruptures. Surveyed linear features that extend across the entire surface rupture zone show that it varies in width from 13 to 122 m. These cultural features also reveal the across-strike distribution of lateral displacement, 80% of which is, on average, concentrated within the central 43% of the rupture zone. Combining the near-field measurements of fault offset with published, far-field InSAR, continuous GPS, and coastal deformation data, suggests partitioning of oblique plate convergence, with a significant portion of co-seismic contractional deformation (and uplift) being accommodated off-fault in the hanging-wall crust to the northwest of the main rupturing faults.  This thesis also documents in detail the onshore extent of surface fault rupture on the Kekerengu, Jordan Thrust, Upper Kowhai and Manakau faults. I present large-scale maps (up to 1:3,000) and documentary field photographs of this 53 km-long onshore surface rupture zone utilizing field data, post-earthquake LiDAR-derived Digital Elevation Models (DEMs), and post-earthquake ortho-rectified aerial photography. Ground deformation data is most detailed near the Marlborough coast where the 2016 rupture trace is well-exposed on agricultural grassland on the Kekerengu fault. In the southwest, where surface fault rupture traversed the alpine slopes of the Seaward Kaikoura ranges, fault mapping relied heavily on the LiDAR-derived DEMs.   At 24 sites along the Kekerengu fault, I document co-seismic wear striae that were formed during the earthquake and were preserved on free face fault exposures. Nearly all of these striae were distinctly curved along their length, demonstrating that the direction of near-surface fault slip changed with time during rupture of the Kekerengu fault. Co-seismic displacement on the Kekerengu fault initiated as oblique-dextral (mainly dextral-reverse), and subsequently rotated to become nearly-pure dextral slip. These slip trajectories agree with directions of net displacements derived from offset linear features at nearby sites. Temporal rotation of the slip direction may suggest a state of low shear stress on the Kekerengu fault before the earthquake, and a near-complete reduction in stress during the earthquake, as has been inferred for other historic earthquakes that show evidence for changing slip direction with time.</p>


2021 ◽  
Author(s):  
Pierre Romanet ◽  
Florent Aden-Antoniow ◽  
Ryosuke Ando ◽  
Stephen Bannister ◽  
Calum Chamberlain ◽  
...  

&lt;p&gt;Seismic tremor has previously been reported in the Marlborough (New Zealand) region, with detections made using the national GeoNet network. However, because of the sparsity of that network, only 40 tremors were detected using 6 stations. We conducted a similar analysis again, but this time using data from 4 stations from the GeoNet network as well as 16 stations from a local campaign network, bringing the total number of stations to 20. Our new tremor catalog contains 4699 tremors (around 100 times more events than the previous catalog) and spans the period 2013-2019 which include the major 2016 Mw7.9 Kaikoura earthquake. Based on our current knowledge, that makes the Marlborough region the most active region for tremors in New Zealand.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;The observed tremor in the region are split into two clusters, separated by a gap of around 20 km. The South-West cluster has an elongated shape in the direction of the upper-plate dextral strike-slip (Hope and Clarence) faults. The occurrence of tremor before the Mw 7.9 Kaikoura earthquake is fairly constant over time. After the earthquake however we observe &amp;#160;a strong acceleration in the rate of tremor, that slowly recovers over time. At the end of the analysis (May 2019), more than 2 years after Kaikoura earthquake, the tremor burst rate has still not recovered to the previous rate before the earthquake. We also observe several episodes of tremor migration, with a migration velocity of around ~50km/day, most of the migration being from South-West to North-East.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;This new tremor catalog provides a unique opportunity to better understand possible interaction of a major earthquake with the tremor activity and will help to better understand the local tectonic activity of the Marlborough region.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Author(s):  
Paul Leon Göllner ◽  
Jan Oliver Eisermann ◽  
Catalina Balbis ◽  
Ivan A. Petrinovic ◽  
Ulrich Riller

AbstractThe Southern Andes are often viewed as a classic example for kinematic partitioning of oblique plate convergence into components of continental margin-parallel strike-slip and transverse shortening. In this regard, the Liquiñe-Ofqui Fault Zone, one of Earth’s most prominent intra-arc deformation zones, is believed to be the most important crustal discontinuity in the Southern Andes taking up margin-parallel dextral strike-slip. Recent structural studies, however, are at odds with this simple concept of kinematic partitioning, due to the presence of margin-oblique and a number of other margin-parallel intra-arc deformation zones. However, knowledge on the extent of such zones in the Southern Andes is still limited. Here, we document traces of prominent structural discontinuities (lineaments) from the Southern Andes between 39° S and 46° S. In combination with compiled low-temperature thermochronology data and interpolation of respective exhumation rates, we revisit the issue of kinematic partitioning in the Southern Andes. Exhumation rates are maximal in the central parts of the orogen and discontinuity traces, trending predominantly N–S, WNW–ESE and NE–SW, are distributed across the entire width of the orogen. Notably, discontinuities coincide spatially with large gradients in Neogene exhumation rates and separate crustal domains characterized by uniform exhumation. Collectively, these relationships point to significant components of vertical displacement on these discontinuities, in addition to horizontal displacements known from published structural studies. Our results agree with previously documented Neogene shortening in the Southern Andes and indicate orogen-scale transpression with maximal vertical extrusion of rocks in the center of the transpression zone. The lineament and thermochronology data call into question the traditional view of kinematic partitioning in the Southern Andes, in which deformation is focused on the Liquiñe-Ofqui Fault Zone.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yang Gao ◽  
HuRong Duan ◽  
YongZhi Zhang ◽  
JiaYing Chen ◽  
HeTing Jian ◽  
...  

AbstractThe 2019 Ridgecrest, California seismic sequence, including an Mw6.4 foreshock and Mw7.1 mainshock, represent the largest regional seismic events within the past 20 years. To obtain accurate coseismic fault-slip distribution, we used precise positioning data of small earthquakes from January 2019 to October 2020 to determine the dip parameters of the eight fault geometry, and used the Interferometric Synthetic Aperture Radar (InSAR) data processed by Xu et al. (Seismol Res Lett 91(4):1979–1985, 2020) at UCSD to constrain inversion of the fault-slip distribution of both earthquakes. The results showed that all faults were sinistral strike-slips with minor dip-slip components, exception for dextral strike-slip fault F2. Fault-slip mainly occurred at depths of 0–12 km, with a maximum slip of 3.0 m. The F1 fault contained two slip peaks located at 2 km of fault S4 and 6 km of fault S5 depth, the latter being located directly above the Mw7.1hypocenter. Two slip peaks with maximum slip of 1.5 m located 8 and 20 km from the SW endpoint of the F2 fault were also identified, and the latter corresponds to the Mw6.4 earthquake. We also analyzed the influence of different inversion parameters on the fault slip distribution, and found that the slip momentum smoothing condition was more suitable for the inversion of the earthquakes slip distribution than the stress-drop smoothing condition.


1970 ◽  
Vol 107 (3) ◽  
pp. 235-247 ◽  
Author(s):  
W. E. Tremlett

SummaryEvidence of substantial dextral strike-slip displacements along the Caledonoid fault-set of northern Lleyn is revealed by the distribution of Pre-Cambrian igneous and metamorphic rocks, Ordovician volcanic rocks and Caledonian ‘early granodioritic’ intrusions. These apparently occurred prior to some smaller sinistral strike-slip movements which left total net dextral displacements of 91/2 km. Both types of movement were completed before the Caledonoid faults were disrupted by NNW sinistral faulting and more intrusions of Lower Old Red Sandstone age were emplaced.


Sign in / Sign up

Export Citation Format

Share Document