Rupture Propagation along Stepovers of Strike-Slip Faults: Effects of Initial Stress and Fault Geometry

2020 ◽  
Vol 110 (3) ◽  
pp. 1011-1024 ◽  
Author(s):  
Hui Wang ◽  
Mian Liu ◽  
Benchun Duan ◽  
Jianling Cao

ABSTRACT Large earthquakes on strike-slip faults often rupture multiple fault segments by jumping over stepovers. Previous studies, based on field observations or numerical modeling with a homogeneous initial stress field, have suggested that stepovers more than ∼5  km wide would stop the propagation of rupture, but many exceptions have been observed in recent years. Here, we integrate a dynamic rupture model with a long-term fault stress model to explore the effects of background stress perturbation on rupture propagation across stepovers along strike-slip faults. Our long-term fault models simulate steady-state stress perturbation around stepovers. Considering such stress perturbation in dynamic rupture models leads to prediction of larger distance a dynamic rupture can jump over stepovers: over 15 km for a releasing stepover or 7 km for a restraining stepover, comparing with the 5 km limit in models with the same fault geometry and frictional property but assuming a homogeneous initial stress. The effect of steady-state stress perturbations is stronger in an overlapping stepover than in an underlapping stepover. The maximum jumping distance can reach 20 km in an overlapping releasing stepover with low-static frictional coefficients. These results are useful for estimating the maximum length of potential fault ruptures and assessing seismic hazard.

Geology ◽  
2019 ◽  
Vol 47 (9) ◽  
pp. 838-842
Author(s):  
Jesse Kearse ◽  
Yoshihiro Kaneko ◽  
Tim Little ◽  
Russ Van Dissen

Abstract Slip-parallel grooves (striations) on fault surfaces are considered a robust indicator of fault slip direction, yet their potential for recording aspects of earthquake rupture dynamics has received little attention. During the 2016 Kaikōura earthquake (South Island, New Zealand), >10 m of dextral strike-slip on the steeply dipping Kekerengu fault exhumed >200 m2 of fresh fault exposure (free faces) where it crossed bedrock canyons. Inscribed upon these surfaces, we observed individual striae up to 6 m long, all of which had formed during the earthquake. These were typically curved. Using simulations of spontaneous dynamic rupture on a vertical strike-slip fault, we reproduce the curved morphology of striae on the Kekerengu fault. Assuming strike-slip pre-stress, our models demonstrate that vertical tractions induced by slip in the so-called cohesive zone result in transient changes in slip direction. We show that slip-path convexity is sensitive to the direction of rupture propagation. To match the convexity of striae formed in 2016 requires the rupture to have propagated in a northeast direction, a prediction that matches the known rupture direction of the Kaikōura earthquake. Our study highlights the potential for fault striae to record aspects of rupture dynamics, including the rupture direction of paleo strike-slip earthquakes.


2021 ◽  
Author(s):  
Ruth Harris ◽  
Michael Barall ◽  
David Ponce ◽  
Diane Moore ◽  
Russell Graymer ◽  
...  

<p>The Rodgers Creek-Hayward-Calaveras-Northern Calaveras fault system in California dominates the hazard posed by active faults in the San Francisco Bay Area. Given that this fault system runs through a densely populated area, a large earthquake in this region is likely to affect millions of people. This study produced scenarios of large earthquakes in this fault system, using spontaneous (dynamic) rupture simulations. These types of physics-based computational simulations require information about the 3D fault geometry, physical rock properties, fault friction, and initial stress conditions. In terms of fault geometry, the well-connected multi-fault system includes the Hayward fault, at its southern end the Central and Northern Calaveras faults, and at its northern end the Rodgers Creek fault. Geodetic investigations of the fault system’s slip-rate pattern provide images of where the fault surfaces at depth are creeping or locked interseismically, and this helped us choose appropriate initial stress conditions for our simulations. A 3D geologic model of the fault system provides the 3D rock units and fault structure at depth, while field samples from rocks collected at Earth’s surface provide frictional parameters. We used this suite of information to investigate the behavior of large earthquake ruptures nucleating at various positions along this partially creeping fault system. We found that large earthquakes starting on the Hayward fault or on the Rodgers Creek fault may be slowed, stopped, or unaffected in their progress, depending on how much energy is released by the creeping regions of the Hayward and Central Calaveras faults during the time between large earthquakes. Large earthquakes starting on either the Hayward fault or the Rodgers Creek faults will likely not rupture the Northern Calaveras fault, and large earthquakes starting on either the Northern Calaveras fault or the Central Calaveras fault will likely remain confined to those fault segments.</p>


Author(s):  
Michel Bouchon ◽  
Hayrullah Karabulut ◽  
Mustafa Aktar ◽  
Serdar Özalaybey ◽  
Jean Schmittbuhl ◽  
...  

Summary In spite of growing evidence that many earthquakes are preceded by increased seismic activity, the nature of this activity is still poorly understood. Is it the result of a mostly random process related to the natural tendency of seismic events to cluster in time and space, in which case there is little hope to ever predict earthquakes? Or is it the sign that a physical process that will lead to the impending rupture has begun, in which case we should attempt to identify this process. With this aim we take a further look at the nucleation of two of the best recorded and documented strike-slip earthquakes to date, the 1999 Izmit and Düzce earthquakes which ruptured the North Anatolian Fault over ∼200 km. We show the existence of a remarkable mechanical logic linking together nucleation characteristics, stress loading, fault geometry and rupture speed. In both earthquakes the observations point to slow aseismic slip occurring near the ductile-to-brittle transition zone as the motor of their nucleation.


2013 ◽  
Vol 11 (1) ◽  
pp. 625-633 ◽  
Author(s):  
Philippe Brunet de la Grange ◽  
Marija Vlaski ◽  
Pascale Duchez ◽  
Jean Chevaleyre ◽  
Veronique Lapostolle ◽  
...  

2021 ◽  
Author(s):  
Duna Roda-Boluda ◽  
Taylor Schildgen ◽  
Hella Wittmann-Oelze ◽  
Stefanie Tofelde ◽  
Aaron Bufe ◽  
...  

<p>The Southern Alps of New Zealand are the expression of the oblique convergence between the Pacific and Australian plates, which move at a relative velocity of nearly 40 mm/yr. This convergence is accommodated by the range-bounding Alpine Fault, with a strike-slip component of ~30-40 mm/yr, and a shortening component normal to the fault of ~8-10 mm/yr. While strike-slip rates seem to be fairly constant along the Alpine Fault, throw rates appear to vary considerably, and whether the locus of maximum exhumation is located near the fault, at the main drainage divide, or part-way between, is still debated. These uncertainties stem from very limited data characterizing vertical deformation rates along and across the Southern Alps. Thermochronology has constrained the Southern Alps exhumation history since the Miocene, but Quaternary exhumation is hard to resolve precisely due to the very high exhumation rates. Likewise, GPS surveys estimate a vertical uplift of ~5 mm/yr, but integrate only over ~10 yr timescales and are restricted to one transect across the range.</p><p>To obtain insights into the Quaternary distribution and rates of exhumation of the western Southern Alps, we use new <sup>10</sup>Be catchment-averaged erosion rates from 20 catchments along the western side of the range. Catchment-averaged erosion rates span an order of magnitude, between ~0.8 and >10 mm/yr, but we find that erosion rates of >10 mm/yr, a value often quoted in the literature as representative for the entire range, are very localized. Moreover, erosion rates decrease sharply north of the intersection with the Marlborough Fault System, suggesting substantial slip partitioning. These <sup>10</sup>Be catchment-averaged erosion rates integrate, on average, over the last ~300 yrs. Considering that the last earthquake on the Alpine Fault was in 1717, these rates are representative of inter-seismic erosion. Lake sedimentation rates and coseismic landslide modelling suggest that long-term (~10<sup>3</sup> yrs) erosion rates over a full seismic cycle could be ~40% greater than our inter-seismic erosion rates. If we assume steady state topography, such a scaling of our <sup>10</sup>Be erosion rate estimates can be used to estimate rock uplift rates in the Southern Alps. Finally, we find that erosion, and hence potentially exhumation, does not seem to be localized at a particular distance from the fault, as some tectonic and provenance studies have suggested. Instead, we find that superimposed on the primary tectonic control, there is an elevation/temperature control on erosion rates, which is probably transient and related to frost-cracking and glacial retreat.</p><p>Our results highlight the potential for <sup>10</sup>Be catchment-averaged erosion rates to provide insights into the magnitude and distribution of tectonic deformation rates, and the limitations that arise from transient erosion controls related to the seismic cycle and climate-modulated surface processes.</p><p> </p><p> </p>


1981 ◽  
Vol 71 (1) ◽  
pp. 95-116 ◽  
Author(s):  
Allan G. Lindh ◽  
David M. Boore

abstract A reanalysis of the available data for the 1966 Parkfield, California, earthquake (ML=512) suggests that although the ground breakage and aftershocks extended about 40 km along the San Andreas Fault, the initial dynamic rupture was only 20 to 25 km in length. The foreshocks and the point of initiation of the main event locate at a small bend in the mapped trace of the fault. Detailed analysis of the P-wave first motions from these events at the Gold Hill station, 20 km southeast, indicates that the bend in the fault extends to depth and apparently represents a physical discontinuity on the fault plane. Other evidence suggests that this discontinuity plays an important part in the recurrence of similar magnitude 5 to 6 earthquakes at Parkfield. Analysis of the strong-motion records suggests that the rupture stopped at another discontinuity in the fault plane, an en-echelon offset near Gold Hill that lies at the boundary on the San Andreas Fault between the zone of aseismic slip and the locked zone on which the great 1857 earthquake occurred. Foreshocks to the 1857 earthquake occurred in this area (Sieh, 1978), and the epicenter of the main shock may have coincided with the offset zone. If it did, a detailed study of the geological and geophysical character of the region might be rewarding in terms of understanding how and why great earthquakes initiate where they do.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
M. V. Barbarossa ◽  
M. Polner ◽  
G. Röst

We investigate the temporal evolution of the distribution of immunities in a population, which is determined by various epidemiological, immunological, and demographical phenomena: after a disease outbreak, recovered individuals constitute a large immune population; however, their immunity is waning in the long term and they may become susceptible again. Meanwhile, their immunity can be boosted by repeated exposure to the pathogen, which is linked to the density of infected individuals present in the population. This prolongs the length of their immunity. We consider a mathematical model formulated as a coupled system of ordinary and partial differential equations that connects all these processes and systematically compare a number of boosting assumptions proposed in the literature, showing that different boosting mechanisms lead to very different stationary distributions of the immunity at the endemic steady state. In the situation of periodic disease outbreaks, the waveforms of immunity distributions are studied and visualized. Our results show that there is a possibility to infer the boosting mechanism from the population level immune dynamics.


Sign in / Sign up

Export Citation Format

Share Document