scholarly journals Eruption risks from covert silicic magma bodies

Geology ◽  
2021 ◽  
Author(s):  
Shane M. Rooyakkers ◽  
John Stix ◽  
Kim Berlo ◽  
Maurizio Petrelli ◽  
Freysteinn Sigmundsson

Unintentional encounters with silicic magma at ~2–2.5 km depth have recently occurred during drilling at three volcanoes: Kilauea (Hawaii), Menengai (Kenya), and Krafla (Iceland). Geophysical surveys had failed to warn about shallow magma before each encounter, and subsequent surveys at Krafla have been unable to resolve the size or architecture of its silicic magma body. This presents a conundrum for volcano monitoring: Do such shallow “covert” magma bodies pose an eruption risk? Here, we show that Krafla’s most recent explosive eruption, a mixed hydrothermal-magmatic event in 1724 C.E. that formed the Víti maar, involved rhyolite essentially indistinguishable in composition from magma encountered during drilling in 2009. Streaks of quenched basalt in some Víti pumices provide direct evidence for interaction between co-erupted rhyolitic and basaltic magmas, but crystals in these pumices show no evidence for late-stage heating or re-equilibration with more mafic melt, implying mixing time scales of at most several hours. Covert silicic magma thus presents an eruption risk at Krafla and may be mobilized with little warning. Difficulties in resolving magma bodies smaller than ~1 km3 with geophysical surveys mean that covert silicic magma may exist at many other volcanoes and should be considered in hazard and risk assessments.

2019 ◽  
Vol 35 (3) ◽  
pp. 1441-1464 ◽  
Author(s):  
Russell A. Green ◽  
Julian J. Bommer

Probabilistic assessments of the potential impact of earthquakes on infrastructure entails the consideration of smaller magnitude events than those generally considered in deterministic hazard and risk assessments. In this context, it is useful to establish if there is a magnitude threshold below which the possibility of triggering liquefaction can be discounted because such a lower bound is required for probabilistic liquefaction hazard analyses. Based on field observations and a simple parametric study, we conclude that earthquakes as small as moment magnitude 4.5 can trigger liquefaction in extremely susceptible soil deposits. However, for soil profiles that are suitable for building structures, the minimum earthquake magnitude for the triggering of liquefaction is about 5. We therefore propose that in liquefaction hazard assessments of building sites, magnitude 5.0 be adopted as the minimum earthquake size considered, while magnitudes as low as 4.5 may be appropriate for some other types of infrastructure.


Author(s):  
Moness Rizkalla ◽  
R. S. (Rod) Read

Undertaking a systematic pipeline geohazard assessment may be driven by the design and regulatory permitting needs for proposed new pipelines or as an input to the integrity management of operating pipeline assets. Yet the leading international pipeline codes do not provide explicit direction on undertaking such assessments, rather providing considerable latitude in the guidance to do so which in turn provides several options. The methods for identifying and assessing the potential likelihood and severity of geohazards vary significantly, from purely expert judgment-based approaches relying largely on visual observations of geomorphology to analytically-intensive methods incorporating phenomenological and/or mechanistic models and route, pipeline properties and, where applicable, operational monitoring data. Each of these methods can be used to assess hazard and risk associated with specific geohazards in terms of qualitative, semi-quantitative or quantitative approaches provided that associated underlying assumptions are clearly understood. Some of these methods are better suited to provide a continuous contiguous geohazard risk assessment for a pipeline system while others are better suited for localized site-specific risk assessments. Following a brief review of pipeline codes, this paper provides an overview of the range of pipeline geohazard assessment approaches and explores the “fitness for purpose” strategy that allows for continuing improvement during design stages and into operations.


2021 ◽  
Author(s):  
◽  
Simon James Barker

<p>This thesis research presents geochemical perspectives on the magmatic recovery of Taupo volcano (New Zealand) in the aftermath of the 25.4 ka Oruanui supereruption. Following the Oruanui, and after only ~5 kyr of quiescence, Taupo erupted three small volume (~0.1 km3) dacitic units, followed by another ~5 kyr break, and then the modern sequence from ~12 ka onwards of 25 rhyolitic units organised into 3 geochemically distinct subgroups (SG1-SG3). The eruptive units are stratigraphically constrained over exceptionally short time intervals, providing fine-scale temporal snapshots of the magma system. In this thesis I compare and contrast whole-rock, mineral and glass compositions of Oruanui and post-Oruanui magmas through time to investigate the post-supereruption reconstruction and evolution of Taupo through to the latest eruption.  Despite overlapping vent sites and crustal source domains between the Oruanui and post-Oruanui eruptions, U/Th disequilibrium model-ages in zircons from Taupo SG1 rhyolites (erupted 12 ka-10 ka) and SG2 rhyolites (erupted 7 ka-2.6 ka) imply the presence of only minor inheritance of crystals from the Oruanui magma source. Post-Oruanui model-age spectra are instead typically centred close to eruption ages with subordinate older pre-300 ka equiline grains. U-Pb dating of these equiline grains shows that both 300-450 ka plutonic-derived and pre-100 Ma greywacke basement-derived zircons are present. The former largely coincide in age with zircons from the 350 ka Whakamaru eruption products, and are dominant over greywacke in young units which were vented within the published Whakamaru caldera outline. Despite multiple ages and vent sites, trace element compositions are broadly similar in zircons, regardless of their ages. However, a small subset of zircons analysed from SG1 rhyolites have notably high concentrations of U, Th, P, Y+ (REE)3+ and Nb but with only minor changes in Hf and Ti. SG2 zircons typically have higher Sc, reflecting large-scale changes in melt chemistry and crystallising mineral phases with time. The age spectra indicate that most Oruanui zircons were removed by thermally induced dissolution immediately following the supereruption. U-Th ages from individual post-Oruanui eruptions show consistent inheritance of post-Oruanui grains with model ages that centre between the temporally separated but geographically overlapping eruption groups, generating model-age modes. Within the statistical limitations of the isotopic measurements, we interpret these repeated modes to be significant, resulting from incorporation of crystal populations from cyclic post-Oruanui periods of magmatic cooling and crystallisation, acting within a crustal protolith chemically independent of that which built the Oruanui. Cooling periods alternate with times of rejuvenation and eruption, in some cases demonstrably accompanying syn-eruptive regional rifting and mafic injection. Not only were the processes that developed the supersized Oruanui magma body unusually rapid, but this huge magma system was effectively reset and rebuilt on a comparably short timescale.  Major and trace element whole rock, glass and mineral chemistry of post-Oruanui eruptive products indicate how the host magma system re-established and evolved. The dacite units show wide variations in melt inclusion compositions and strongly zoned minerals consistent with interaction of less-evolved mafic magmas at a depths of >8 km, overlapping with the inferred base of the old Oruanui mush system. The dacites reflect the first products of the rebuilding silicic magma system, as most of the Oruanui mush was reconfigured or significantly modified in composition following thermal fluxing accompanying post-caldera collapse readjustment. The first (SG1) rhyolites erupted from 12 ka formed through shallow fractionation (4-5 km depth) and cooling of a parental melt similar in composition to the earlier dacite melts, with overlapping melt inclusion and crystal core compositions between the two magma types. For the younger rhyolite units, fine-scale temporal changes in melt chemistry and mineral phase stability occur over time, which are closely linked to the development, stabilisation and maturation of a new and likely unitary rhyolite mush system at Taupo. The new mush system is closely linked to and sometimes physically interacts with the underlying mafic melts, which are similar in composition to those involved in the Oruanui eruption and provide the long-term thermal and chemical driving force for magmatism. We consider that the new mush body has expanded to >250 km3 (and possibly up to 1000 km3) but has not yet been located by geophysical investigations.  For the most recent SG3 eruptions, the system once again underwent widespread destabilisation, resulting in increased levels of melt extraction from the silicic mush. Trends in whole-rock chemistry and close links between melt inclusions and mineral zoning with earlier units indicates that the 35 km3 Unit Y (Taupo eruption) melt dominant body formed in response to mafic disruption of the silicic mush pile. Associated Fe-Mg diffusion timescales in orthopyroxene suggest that Taupo is capable of changing behaviour and generating large eruptible melt bodies on timescales as short as decades to centuries. The 232 AD Unit Y eruption culminated from a critical combination of high differential tectonic stress build up, and increased potency in the silicic magma system resulting from elevated levels of mafic magma input, resulting in one of the largest and most violent worldwide Holocene eruptions. The post-Y magma system then responded to further disruption with the eruption of sub-lacustrine dome(s). Taupo is considered to be capable of rapidly recovering in its modern form to continue its hyperactive eruptive behaviour on timescales that are of human interest and concern.</p>


Geophysics ◽  
1985 ◽  
Vol 50 (7) ◽  
pp. 1136-1143 ◽  
Author(s):  
Gregory A. Newman ◽  
Philip E. Wannamaker ◽  
Gerald W. Hohmann

We utilized resistivity models of silicic magma chambers to explore effects that layering can have on three‐dimensional (3-D) magnetotelluric (MT) responses. Model simulations show that MT detection of magma may depend strongly on its one‐dimensional host. The 3-D responses of a model juvenile magma body which is connected electrically to deeper, less resistive crust of regional extent are very subdued. However, intermediate and mature magmatic systems, leaving magma no longer in contact with lower, less resistive crust, may be detectable with the MT method. Further, the release and ascent of volatiles from crystallizing melt may lead to fracturing above the chamber, thereby establishing electrical contact of the magma with shallow, conductive crust and amplifying its MT response.


Eos ◽  
2003 ◽  
Vol 84 (23) ◽  
pp. 213 ◽  
Author(s):  
David Zimbelman ◽  
Robert J. Watters ◽  
Steve Bowman ◽  
Ian Firth

2013 ◽  
Vol 41 (1) ◽  
pp. 91-110 ◽  
Author(s):  
Ullrika Sahlin ◽  
Laura Golsteijn ◽  
M. Sarfraz Iqbal ◽  
Willie Peijnenburg

Sign in / Sign up

Export Citation Format

Share Document