scholarly journals A Quick Guide to Small-Molecule Inhibitors of Eukaryotic Protein Synthesis

2020 ◽  
Vol 85 (11) ◽  
pp. 1389-1421
Author(s):  
S. E. Dmitriev ◽  
D. O. Vladimirov ◽  
K. A. Lashkevich

Abstract Eukaryotic ribosome and cap-dependent translation are attractive targets in the antitumor, antiviral, anti-inflammatory, and antiparasitic therapies. Currently, a broad array of small-molecule drugs is known that specifically inhibit protein synthesis in eukaryotic cells. Many of them are well-studied ribosome-targeting antibiotics that block translocation, the peptidyl transferase center or the polypeptide exit tunnel, modulate the binding of translation machinery components to the ribosome, and induce miscoding, premature termination or stop codon readthrough. Such inhibitors are widely used as anticancer, anthelmintic and antifungal agents in medicine, as well as fungicides in agriculture. Chemicals that affect the accuracy of stop codon recognition are promising drugs for the nonsense suppression therapy of hereditary diseases and restoration of tumor suppressor function in cancer cells. Other compounds inhibit aminoacyl-tRNA synthetases, translation factors, and components of translation-associated signaling pathways, including mTOR kinase. Some of them have antidepressant, immunosuppressive and geroprotective properties. Translation inhibitors are also used in research for gene expression analysis by ribosome profiling, as well as in cell culture techniques. In this article, we review well-studied and less known inhibitors of eukaryotic protein synthesis (with the exception of mitochondrial and plastid translation) classified by their targets and briefly describe the action mechanisms of these compounds. We also present a continuously updated database (http://eupsic.belozersky.msu.ru/) that currently contains information on 370 inhibitors of eukaryotic protein synthesis.

2007 ◽  
Vol 51 (12) ◽  
pp. 4462-4465 ◽  
Author(s):  
Susan J. Schroeder ◽  
Gregor Blaha ◽  
Peter B. Moore

ABSTRACT Negamycin, a small-molecule inhibitor of protein synthesis, binds the Haloarcula marismortui 50S ribosomal subunit at a single site formed by highly conserved RNA nucleotides near the cytosolic end of the nascent chain exit tunnel. The mechanism of antibiotic action and the function of this unexplored tunnel region remain intriguingly elusive.


2018 ◽  
Author(s):  
Villu Kasari ◽  
Tõnu Margus ◽  
Gemma C. Atkinson ◽  
Marcus J.O. Johansson ◽  
Vasili Hauryliuk

AbstractIn addition to the standard set of translation factors common in eukaryotic organisms, protein synthesis in the yeast Saccharomyces cerevisiae requires an ABCF ATPase factor eEF3, eukaryotic Elongation Factor 3. eEF3 is an E-site binder that was originally identified as an essential factor involved in the elongation stage of protein synthesis. Recent biochemical experiments suggest an additional function of eEF3 in ribosome recycling. We have characterised the global effects of eEF3 depletion on translation using ribosome profiling. Depletion of eEF3 results in decreased ribosome density at the stop codon, indicating that ribosome recycling does not become rate limiting when eEF3 levels are low. Consistent with a defect in translation elongation, eEF3 depletion causes a moderate redistribution of ribosomes towards the 5’ part of the open reading frames. We observed no E-site codon-or amino acid-specific ribosome stalling upon eEF3 depletion, supporting its role as a general elongation factor. Surprisingly, depletion of eEF3 leads to a relative decrease in P-site proline stalling, which we hypothesise is a secondary effect of generally decreased translation and/or decreased competition for the E-site with eIF5A.


2019 ◽  
Author(s):  
April Snofrid Kleppe ◽  
Erich Bornberg-Bauer

AbstractOccasionally during protein synthesis, the ribosome bypasses the stop codon and continues translation to the next stop codon in frame. This error is called translational readthrough (TR). Earlier research suggest that TR is a relatively common error, in several taxa, yet the evolutionary relevance of this translational error is still unclear. By analysing ribosome profiling data, we have conducted species comparisons between yeasts to infer conservation of TR between orthologs. Moreover, we infer the evolutionary rate of error prone and canonically translated proteins to deduct differential selective pressure. We find that about 40% of error prone proteins in Schizosaccharomyces pombe do not have any orthologs in Saccharomyces cerevisiae, but that 60% of error prone proteins in S. pombe are undergoing canonical translation in S. cerevisiae. Error prone proteins tend to have a higher GC-content in the 3’-UTR, unlike their canonically translated ortholog. We do not find the same trends for GC-content of the CDS. We discuss the role of 3’-UTR and GC-content regarding translational readthrough. Moreover, we find that there is neither selective pressure against or for TR. We suggest that TR is a near-neutral error that goes unseen by natural selection. We speculate that TR yield neutral protein isoforms that are not being purged. We suggest that isoforms, yielded by TR, increase proteomic diversity in the cell, which is readily available upon sudden environmental shifts and which therefore may become adaptive.Author SummaryThere is an evolutionary balance act between adaptation and selection against change. Any system needs to be able to adapt facing novel environmental conditions. Simultaneously, biological systems are under selection to maintain fitness and thus undergo selection against mutations. Phenotypic mutations - translational errors during protein synthesis - have been suggested to play a role in protein evolvability by enabling quick assessment of viable phenotypes and thus enable quick adaptation. Here we test this hypothesis, by inferring evolutionary rate of proteins prone to a specific case of phenotypic mutations: translational readthrough (TR). By making use of publicly available data of yeasts, we find that TR goes unseen by natural selection and appear as a neutral event. We suggest that TR goes unseen by selection and occurs as “permissive wallflowers”, which may become relevant and yield adaptive benefits. This work highlights that stochastic processes are not necessarily under stringent selection but may prevail. In conclusion, we suggest that TR is a neutral non-adaptive process that can yield adaptive benefits.


2004 ◽  
Vol 48 (12) ◽  
pp. 4889-4891 ◽  
Author(s):  
Jill Thompson ◽  
Catherine A. Pratt ◽  
Albert E. Dahlberg

ABSTRACT The effect of a number of antibiotics on stop codon readthrough during protein synthesis in Escherichia coli was examined. Inhibitors which bind close to the entrance of the peptide exit tunnel on the 50S ribosomal subunit promote substantial levels of readthrough, presumably by disrupting the mechanism of peptide release.


Author(s):  
W.N. Bentham ◽  
V. Rocha

It has been an interest of our lab to develop a mammary epethelial cell culture system that faithfully duplicates the in vivo condition of the lactating gland. Since the introduction of collagen as a matrix on which cells are cultivated other E.C.M. type matrices have been made available and are used in many cell culture techniques. We have previously demonstrated that cells cultured on collagen and Matrigel do not differentiate as they do in vivo. It seems that these cultures often produce cells that show a disruption in the secretory process. The appearance of large ribosomal studded vesicles, that specifically label with antibody to casein, suggest an interruption of both protein maturation and secretion at the E.R. to golgi transition. In this report we have examined cultures on collagen and Matrigel at relative high and low seeding densities and compared them to cells from the in vivo condition.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kyle A. Cottrell ◽  
Ryan C. Chiou ◽  
Jason D. Weber

AbstractTumor cells require nominal increases in protein synthesis in order to maintain high proliferation rates. As such, tumor cells must acquire enhanced ribosome production. How the numerous mutations in tumor cells ultimately achieve this aberrant production is largely unknown. The gene encoding ARF is the most commonly deleted gene in human cancer. ARF plays a significant role in regulating ribosomal RNA synthesis and processing, ribosome export into the cytoplasm, and global protein synthesis. Utilizing ribosome profiling, we show that ARF is a major suppressor of 5′-terminal oligopyrimidine mRNA translation. Genes with increased translational efficiency following loss of ARF include many ribosomal proteins and translation factors. Knockout of p53 largely phenocopies ARF loss, with increased protein synthesis and expression of 5′-TOP encoded proteins. The 5′-TOP regulators eIF4G1 and LARP1 are upregulated in Arf- and p53-null cells.


2021 ◽  
Vol 22 (6) ◽  
pp. 3042
Author(s):  
Eun Ju Lee ◽  
Khurshid Ahmad ◽  
Shiva Pathak ◽  
SunJu Lee ◽  
Mohammad Hassan Baig ◽  
...  

In recent years, a major rise in the demand for biotherapeutic drugs has centered on enhancing the quality and efficacy of cell culture and developing new cell culture techniques. Here, we report fibronectin (FN) derived, novel peptides fibronectin-based intergrin binding peptide (FNIN)2 (18-mer) and FNIN3 (20-mer) which promote cell adhesion proliferation, and the differentiation of primary cells and stem cells. FNIN2 and 3 were designed based on the in silico interaction studies between FN and its receptors (integrin α5β1, αvβ3, and αIIbβ3). Analysis of the proliferation of seventeen-cell types showed that the effects of FNINs depend on their concentration and the existence of expressed integrins. Significant rhodamine-labeled FNIN2 fluorescence on the membranes of HeLa, HepG2, A498, and Du145 cells confirmed physical binding. Double coating with FNIN2 or 3 after polymerized dopamine (pDa) or polymerized tannic acid (pTA) precoating increased HBEpIC cell proliferation by 30–40 percent, suggesting FNINs potently affect primary cells. Furthermore, the proliferation of C2C12 myoblasts and human mesenchymal stem cells (MSCs) treated with FNINs was significantly increased in 2D/3D culture. FNINs also promoted MSC differentiation into osteoblasts. The results of this study offer a new approach to the production of core materials (e.g., cell culture medium components, scaffolds) for cell culture.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 21
Author(s):  
Brigitte Altmann ◽  
Christoph Grün ◽  
Cordula Nies ◽  
Eric Gottwald

In this second part of our systematic review on the research area of 3D cell culture in micro-bioreactors we give a detailed description of the published work with regard to the existing micro-bioreactor types and their applications, and highlight important results gathered with the respective systems. As an interesting detail, we found that micro-bioreactors have already been used in SARS-CoV research prior to the SARS-CoV2 pandemic. As our literature research revealed a variety of 3D cell culture configurations in the examined bioreactor systems, we defined in review part one “complexity levels” by means of the corresponding 3D cell culture techniques applied in the systems. The definition of the complexity is thereby based on the knowledge that the spatial distribution of cell-extracellular matrix interactions and the spatial distribution of homologous and heterologous cell–cell contacts play an important role in modulating cell functions. Because at least one of these parameters can be assigned to the 3D cell culture techniques discussed in the present review, we structured the studies according to the complexity levels applied in the MBR systems.


Sign in / Sign up

Export Citation Format

Share Document