Effect of Grain Size and Pb Doping on the Thermoelectric Properties of Extruded Samples of the Bi0.85Sb0.15 Solid Solution

2021 ◽  
Vol 57 (2) ◽  
pp. 113-118
Author(s):  
M. M. Tagiyev
2021 ◽  
Vol 13 (3) ◽  
pp. 4185-4191
Author(s):  
Yutian Wu ◽  
Xianli Su ◽  
Dongwang Yang ◽  
Qingjie Zhang ◽  
Xinfeng Tang

2018 ◽  
Vol 941 ◽  
pp. 1137-1142
Author(s):  
Elena Colombini ◽  
Andrea Garzoni ◽  
Roberto Giovanardi ◽  
Paolo Veronesi ◽  
Angelo Casagrande

The equimolar Cr, Mn, Fe, Co and Ni alloy, first produced in 2004, was unexpectedly found to be single-phase. Consequently, a new concept of materials was developed: high entropy alloys (HEA) forming a single solid-solution with a near equiatomic composition of the constituting elements. In this study, an equimolar CoCrFeMnNi HEA was modified by the addition of 5 at% of either Al, Cu or Zr. The cold-rolled alloys were annealed for 30 minutes at high temperature to investigate the recrystallization kinetics. The evolution of the grain boundary and the grain size were investigated, from the as-cast to the recrystallized state. Results show that the recrystallized single phase FCC structures exhibits different twin grains density, grain size and recrystallization temperatures as a function of the at.% of modifier alloying elements added. In comparison to the equimolar CoCrFeMnNi, the addition of modifier elements increases significantly the recrystallization temperature after cold deformation. The sluggish diffusion (typical of HEA alloys), the presence of a solute in solid solution as well as the low twin boundary energy are responsible for the lower driving force for recrystallization.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1473
Author(s):  
Hao Wang ◽  
Yanping Bao ◽  
Chengyi Duan ◽  
Lu Lu ◽  
Yan Liu ◽  
...  

The influence of rare earth Ce on the deep stamping property of high-strength interstitial-free (IF) steel containing phosphorus was analyzed. After adding 120 kg ferrocerium alloy (Ce content is 10%) in the steel, the inclusion statistics and the two-dimensional morphology of the samples in the direction of 1/4 thickness of slab and each rolling process were observed and compared by scanning electron microscope (SEM). After the samples in each rolling process were treated by acid leaching, the three-dimensional morphology and components of the second phase precipitates were observed by SEM and energy dispersive spectrometer (EDS). The microstructure of the sample was observed by optical microscope, and the grain size was compared. Meanwhile, the content and strength of the favorable texture were analyzed by X-ray diffraction (XRD). Finally, the mechanical properties of the product were analyzed. The results showed that: (1) The combination of rare earth Ce with activity O and S in steel had lower Gibbs free energy, and it was easy to generate CeAlO3, Ce2O2S, and Ce2O3. The inclusions size was obviously reduced, but the number of inclusions was increased after adding rare earth. The morphology of inclusions changed from chain and strip to spherical. The size of rare earth inclusions was mostly about 2–5 μm, distributed and dispersed, and their elastic modulus was close to that of steel matrix, which was conducive to improving the structure continuity of steel. (2) The rare earth compound had a high melting point. As a heterogeneous nucleation point, the nucleation rate was increased and the solidification structure was refined. The grade of grain size of products was increased by 1.5 grades, which is helpful to improve the strength and plasticity of metal. (3) Rare earth Ce can inhibit the segregation of P element at the grain boundary and the precipitation of Fe(Nb+Ti)P phase. It can effectively increase the solid solution amount of P element in steel, improve the solid solution strengthening effect of P element in high-strength IF steel, and obtain a large proportion of {111} favorable texture, which is conducive to improving the stamping formability index r90 value.


2014 ◽  
Vol 44 (6) ◽  
pp. 1803-1808 ◽  
Author(s):  
Deepanshu Srivastava ◽  
F. Azough ◽  
M. Molinari ◽  
S. C. Parker ◽  
R. Freer

2012 ◽  
Vol 191 ◽  
pp. 145-150 ◽  
Author(s):  
Michał Stopyra ◽  
Robert Jarosz ◽  
Andrzej Kiełbus

The paper presents analysis of section thickness’ influence on microstructure of Elektron 21 and QE22 magnesium alloys in the form of a stepped casting test. Solid solution grain size and volume fraction of eutectic areas were measured using light microscope and sterological methods. The results showed the significant increase of grain size caused by wall thickness and its slight decrease connected with the distance beetwen analysed section and the gating system. This relationship was confirmed using statistical methods. QE22 alloy demonstrated finer grain structure than Elektron 21 alloy as well as lesser susceptibility of grain size to solidification conditions


2016 ◽  
Vol 45 (30) ◽  
pp. 12119-12126 ◽  
Author(s):  
Robin Lefèvre ◽  
David Berthebaud ◽  
Sabah Bux ◽  
Sylvie Hébert ◽  
Franck Gascoin

The modification of the Ba content within the pseudo hollandite BaxCr5Se8 leads to remarkable variations of the transport properties.


Sign in / Sign up

Export Citation Format

Share Document