Optimization of culture medium and growth conditions for production of L-arabinose isomerase and D-xylose isomerase by Lactobacillus bifermentans

Microbiology ◽  
2008 ◽  
Vol 77 (3) ◽  
pp. 281-287 ◽  
Author(s):  
S. Givry ◽  
F. Duchiron
1997 ◽  
Vol 273 (4) ◽  
pp. F499-F506 ◽  
Author(s):  
Elisabeth Feifel ◽  
Markus Krall ◽  
John P. Geibel ◽  
Walter Pfaller

The aim of the present study was to obtain detailed information on MDCK cell proton secretion characteristics under various growth conditions. Confluent monolayers cultured on glass coverslips were adapted over 48 h to media with different osmolality and pH (200 mosmol/kgH2O, pH 7.4; 300 mosmol/kgH2O, pH 7.4; and 600 mosmol/kgH2O, pH 6.8) corresponding to the luminal fluid composition of the collecting duct segments found in the in renal cortex, the outer stripe of outer medulla and inner medulla. Proton fluxes were determined from the recovery of intracellular pH following an acid load induced by an NH4Cl pulse times the corresponding intrinsic buffering power (βi). The intracellular buffering power was found to change only with culture medium osmolality but not with culture medium pH. In addition to an amiloride and Hoe-694-sensitive Na+/H+exchange, Madin-Darby canine kidney (MDCK) cells possess a Sch-28080-sensitive, K+-dependent H+ extrusion mechanism that is increased upon adaptation of monolayers to hyperosmotic-acidic culture conditions. A significant contribution of the bafilomycin A1-sensitive vacuolar H+-ATPase could be found only in cells adapted to hyposmotic culture conditions. Exposure of MDCK cells to 10−5 or 10−7 M aldosterone for either 1 or 18 h did not alter the H+ extrusion characteristics significantly. The results obtained show that different extracellular osmolality and pH induce different MDCK phenotypes with respect to their H+-secreting systems.


1971 ◽  
Vol 17 (2) ◽  
pp. 269-275 ◽  
Author(s):  
Toshi Kaneda

Factors affecting relative proportions of long-chain fatty acids produced by the growing cells of Bacillus cereus have been studied. The organism produces nine branched (i-C12, i-C13, i-C14, i-C15, i-C16, i-C17, a-C13, a-C15, and a-C17), two normal (n-C14 and n-C16), and four monounsaturated (i-C161−, i-C17−1, a-C171−, and n-C161−), in addition to some minor fatty acids. On the basis of biosynthetic relationships these are grouped into four series: anteiso odd-numbered, iso odd-numbered, iso even-numbered, and normal even-numbered. The proportion of the normal series of fatty acids is generally not changed by varying growth conditions. The proportions of the three series of branched-chain fatty acids, however, are greatly affected depending upon growth phase and culture medium used. Younger cells tend to produce the four series in a closer ratio (1.5/1.8/0.8/1.0), whereas older cells produce four series in a wider ratio (1/2.2/0.8/1.0).The precursors of the terminal portions of branched-chain fatty acids, L-leucine, L-isoleucine, L-valine, and the related substrates, affected greatly the ratio of the three series of branched-chain fatty acids. Apparently the synthesis of iso odd-numbered acids is more tightly controlled than the synthesis of the two other series of fatty acids. Data suggest that this regulation is very likely to be due to the substrate specificity of the enzyme(s) involved in the fatty acid synthesis, rather than the relative availability of the precursors.


2019 ◽  
Vol 58 (5) ◽  
pp. 1-23
Author(s):  
Anton Z. Mindubaev ◽  
◽  
Elena K. Badeeva ◽  
Salima T. Minzanova ◽  
Lubov G. Mironova ◽  
...  

The biodegradation of white phosphorus is undoubtedly an amazing illustration of the adaptability of living organisms to adverse environmental factors. In addition, it is a potential basis for the creation of new, breakthrough methods for detoxifying substances of the first class danger. However, establishing the fact of biological destruction is only half the battle. It is essential to optimize the growth conditions of microbial cultures and P4 biodegradation for industrial cultivation. The presented study compared the growth of Aspergillus niger strain AM1 in culture media varying in composition but containing P4 as the sole source of phosphorus. Of the ten media, two in which Aspergillus grew the fastest were selected. These media were concluded to be optimal for growth. Comparing the compositions of the media and the growth rate of Aspergillus in them, we found a key component that is a favorable factor for the growth of AM1 and the biodegradation of white phosphorus. This component was sodium nitrate (NaNO3). It has also been shown that copper sulphate (CuSO4) has no effect on the growth of Aspergillus in media with white phosphorus, regardless of the composition of these media. This result is in harmony with our previous findings. Furthermore, in the present work, attempts to increase the concentration of white phosphorus in the culture medium to values above 1% are described for the first time. For this purpose, we added the following solvents to the culture media: dimethyl sulfoxide (DMSO) and diesel, in which white phosphorus dissolves relatively well. Apparently, the presence of these substances adversely affects the growth of Aspergill. Therefore, the problem of further increasing the concentration of P4 remains an unanswered.


Fermentation ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 16 ◽  
Author(s):  
Thomas P. West

This review examines the production of the biopolymer curdlan, synthesized by Agrobacterium species (sp.), on processing coproducts and plant lignocellulosic hydrolysates. Curdlan is a β-(1→3)-D-glucan that has various food, non-food and biomedical applications. A number of carbon sources support bacterial curdlan production upon depletion of nitrogen in the culture medium. The influence of culture medium pH is critical to the synthesis of curdlan. The biosynthesis of the β-(1→3)-D-glucan is likely controlled by a regulatory protein that controls the genes involved in the bacterial production of curdlan. Curdlan overproducer mutant strains have been isolated from Agrobacterium sp. ATCC 31749 and ATCC 31750 by chemical mutagenesis and different selection procedures. Several processing coproducts of crops have been utilized to support the production of curdlan. Of the processing coproducts investigated, cassava starch waste hydrolysate as a carbon source or wheat bran as a nitrogen source supported the highest curdlan production by ATCC 31749 grown at 30 °C. To a lesser extent, plant biomass hydrolysates have been explored as possible substrates for curdlan production by ATCC 31749. Prairie cordgrass hydrolysates have been shown to support curdlan production by ATCC 31749 although a curdlan overproducer mutant strain, derived from ATCC 31749, was shown to support nearly double the level of ATCC 31749 curdlan production under the same growth conditions.


2020 ◽  
Vol 10 (3) ◽  
pp. 988 ◽  
Author(s):  
Lourenço Bonneville ◽  
Sagrario Ortiz ◽  
Vera Maia ◽  
Luisa Brito ◽  
Joaquín V. Martínez-Suárez

Listeria monocytogenes is one of the main foodborne pathogens. The formation of biofilms by L. monocytogenes contributes to its resistance to disinfectants, which represents a serious risk for food production plants. The aim of this study was to compare the effect of sub-inhibitory concentrations of benzalkonium chloride (BAC) (1.25 or 2.5 mg/L) on biofilm production and on biofilm reduction after exposure to an inhibitory concentration of BAC (1280 mg/L) in two isogenic L. monocytogenes strains: the BAC-sensitive wild-type strain S2-1 and its BAC-resistant mutant derivative S2BAC, which presented a multidrug resistance phenotype. The biofilm-forming ability of the strains under different BAC concentrations was evaluated by the resazurin method using polystyrene microplates. The biofilm reduction after BAC exposure was evaluated by using stainless steel coupons (SSCs). When the resazurin method was used, S2BAC produced significantly more biofilm in the presence of a sub-inhibitory concentration of BAC compared to that in the culture medium without BAC (p < 0.05). When the SSC method was used, the presence of sub-inhibitory concentrations of BAC resulted in a higher resistance of the biofilm for S2BAC compared to that in the culture medium without BAC (p < 0.05). This was not observed with the sensitive S2-1 strain. These results suggest that biofilm behavior depends on the strain and sub-inhibitory concentrations of disinfectants and may explain the ability of certain isolates to persist in niches of food processing plants.


1991 ◽  
Vol 48 (7) ◽  
pp. 1136-1144 ◽  
Author(s):  
S. S. Bates ◽  
A. S. W. de Freitas ◽  
J. E. Milley ◽  
R. Pocklington ◽  
M. A. Quilliam ◽  
...  

Nitzschia pungens f. multiseries (clone NPARL) was grown in nonaxenic batch culture under a range of growth conditions. Domoic acid (DA) was not detected during exponential growth, but production promptly started at a rate of approximately 1 pg DA∙cell−1∙d−1 at the onset of the stationary phase, in this case induced by silicate limitation. Cellular DA reached a maximum of 7 pg∙cell−1; thereafter, DA production continued at the same rate, with cellular levels remaining relatively constant due to concurrent release of DA into the culture medium. DA production ceased in the absence of nitrogen during the stationary phase, but resumed when nitrate was added back to the medium. Low irradiance slowed the division rate and consequently delayed the attainment of the stationary phase, but DA production rates were comparable with the control once stationary phase was reached. Cells during the dark period of a light–dark cycle, or placed into darkness, or in the presence of the photosynthetic inhibitor DCMU promptly ceased DA production. We conclude that at least three conditions are required for DA production by clone NPARL: cessation of cell division, availability of nitrogen during the stationary phase, and the presence of light. Growth in medium f/2 fulfils these requirements.


2015 ◽  
Vol 50 (5) ◽  
pp. 426-429 ◽  
Author(s):  
Julcéia Camillo ◽  
Jonny Everson Scherwinski-Pereira

The objective of this work was to evaluate the in vitro maintenance of oil palm (Elaeis guineensis and E. oleifera) accessions under slow-growth conditions. Plants produced by embryo rescue were subject to 1/2MS culture medium supplemented with the carbohydrates sucrose, mannitol, and sorbitol at 1, 2, and 3% under 20 and 25±2ºC. After 12 months, the temperature of 20°C reduced plant growth. Sucrose is the most appropriate carbohydrate for maintaining the quality of the plants, whereas mannitol and sorbitol result in a reduced plant survival.


2020 ◽  
Vol 82 (6) ◽  
pp. 1009-1024 ◽  
Author(s):  
Irem Demir ◽  
Alexandre Besson ◽  
Pascal Guiraud ◽  
Cécile Formosa-Dague

Abstract In microalgae harvesting, flocculation is usually a compulsory preliminary step to further separation by sedimentation or flotation. For some microalgae species, and under certain growth conditions, flocculation can occur naturally. Natural flocculation presents many advantages as it does not require the addition of any flocculants to the culture medium and shows high efficiency rate. But because natural flocculation is so specific to the species and conditions, and thanks to the knowledge accumulated over the last years on flocculation mechanisms, researchers have developed strategies to induce this natural harvesting. In this review, we first decipher at the molecular scale the underlying mechanisms of natural flocculation and illustrate them by selected studies from the literature. Then we describe the developed strategies to induce natural flocculation that include the use of biopolymers, chemically modified or not, or involve mixed species cultures. But all these strategies need the addition of external compounds or microorganism which can present some issues. Thus alternative directions to completely eliminate the need for an external molecule, through genetic engineering of microalgae strains, are presented and discussed in the third part of this review.


Sign in / Sign up

Export Citation Format

Share Document